Journal Information
Vol. 16. Issue 1.
Pages 89-98 (January - February 2010)
Share
Share
Download PDF
More article options
Vol. 16. Issue 1.
Pages 89-98 (January - February 2010)
Artigo Original/Original Article
Open Access
Polimorfismos dos alelos m1 e m2 do gene CYP1A1: Susceptibilidade genética para o cancro do pulmão
CYP1A1 m1 and m2 polymorphisms: genetic susceptibility to lung cancer
Visits
5709
Paula Mota1,
Corresponding author
lcarvalho@huc.min-saude.pt

Paula Mota, Instituto de Genética. Faculdade de Medicina, Rua Larga 3000, Coimbra
, David Silva Moura2, Maria Graça Vale3, Henriqueta Coimbra4, Lina Carvalho5, Fernando Regateiro6
1 PhD Student – Instituto de Genética
2 MA Student – Departamento de Zoologia
3 Full Professor – Faculdade de Ciências e Tecnologia
4 PhD M.D. Medical Genetics – Instituto de Genética
5 PhD M.D. Pathology – Instituto de Anatomia Patológica
6 PhD M. D. Medical Genetics – Instituto de Genética
This item has received

Under a Creative Commons license
Article information
Resumo

O cancro do pulmão é considerado uma doença relacionada com o meio ambiente, consequência da exposição a agentes mutagénicos, nomeadamente os presentes no fumo do tabaco. O gene CYP1A1 codifica a enzima aril hidrocarboneto hidroxilase (AHH), da fase I, do sistema multienzimático do citocromo P450, que desempenha uma função preponderante na bioactivação dos procarcinogénios do tabaco. Dois polimorfismos do CYP1A1, m1 (transição T6235C) e m2 (transição A4889G), estão associados a uma maior actividade enzimática, tendo sido referidos como factores genéticos de susceptibilidade para o cancro do pulmão.

Este trabalho teve como objectivo verificar esta possível associação em 175 doentes com cancro do pulmão e 217 controlos da Região Centro de Portugal, por RFLP (polimorfismo de comprimento de fragmentos de restrição).

Foi encontrada a seguinte distribuição para as frequências alélicas: 0.12 e 1.14, para os alelos mutados C e G, respectivamente, na população controlo. Os resultados não revelaram significado estatístico quando comparados com a distribuição encontrada na população de doentes. Relativamente à distribuição genotípica, a situação foi semelhante, não se registando significado estatístico, mesmo quando foram considerados genótipos de alto risco. Tal como noutras populações de diferente origem étnica, parece existir desequilíbrio de ligação para ambos os polimorfimos na população-controlo. Concluímos que nesta amostra de população portuguesa os polimorfismos m1 e m2 de CYP1A1 são particularmente raros, parecendo não existir relevância clínica nem associação à susceptibilidade ao cancro do pulmão.

Rev Port Pneumol 2010; XVI (1): 89-98

Palavras-chave:
Cancro do pulmão
tabaco
citocromo p450
CYP1A1
desequilíbrio de ligação
Abstract

Lung cancer is considered an environment-related disease that develops as a consequence of exposure to mutagenic agents, namely those present in tobacco. The CYP1A1 gene codifies the phase I enzyme aryl hydrocarbon hydroxilase (AHH) belonging to the cytochrome P450 system that plays a major role in the bio-activation of tobacco procarcinogenes. Two CYP1A1 polymorphisms, m1 (T6235C transition) and m2 (A4889G transition), are associated with greater enzymatic activity and have been described as genetic susceptibility factors for lung cancer.

The aim of this study was to verify if this association holds true in blood samples of 175 lung cancer pa tients and 217 non-cancer patients from Portugal’s midlands region. The samples were studied by restriction fragment length polymorphism (RFLP) assay. The allelic frequencies of the mutant alleles were 0.12 for allele C and 1.14 for allele G in the control population. The results were not statistically different from those alleles in the patient population. There was also no statistically significant difference in genotype distribution in lung cancer patients and controls even when combining high risk genotypes. In our control sample, as in other populations of different ethnic origin, both polymorphisms also seem to be in linkage disequilibrium. We conclude that in this sample of the Portuguese population, CYP1A1 m1 and m2 polymorphisms are too rare to be of clinical relevance, and do not seem to be associated with susceptibility to lung cancer.

Rev Port Pneumol 2010; XVI (1): 89-98

Key-words:
Lung cancer
smoking
cytochrome P450
CYP1A1
linkage disequilibrium
Full text is only aviable in PDF
Bibliography
[1.]
L.H. Hartwell, M.B. Kastan.
Cell cycle control and cancer.
Science, 266 (1994), pp. 1821-1828
[2.]
M.B. Kastan, C.E. Canman, C.J. Leonard.
P53, cell cycle control and apoptosis: implications for cancer.
Cancer Metastasis Rev, 14 (1995), pp. 3-15
[3.]
K.W. Kinzler, B. Vagelstein.
Gatekeepers and caretakers.
Nature, 386 (1997), pp. 761-763
[4.]
T. Mukhopadhyay, S.A. Maxwell, J.A. Roth.
P53 suppressor gene, R. G. Landes Co, (1995),
[5.]
B.W. Stewart, P. Kleihues.
World cancer report.
Lyon: IARC Press, 182 (2003),
[6.]
D.P.K. Ng, K.W. Tan, B. Zhao, et al.
CYP1A1 polymorphisms and risk of lung cancer in non-smoking Chinese women: influence of environmental tobacco smoke exposure and GSTM1/T1 genetic variation.
Cancer Causes and Control, 16 (2005), pp. 399-405
[7.]
K.M. Lee, Kang Daehee, M.L. Clapper, et al.
CYP1A1, GSTM1, and GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled analysis among asian populations.
Cancer Epidemiol Biomarkers Prev, 17 (2008), pp. 100-125
[8.]
S.S. Hecht.
Cigarette smoking and lung cancer: chemical mechanisms and approaches to prevention.
Lancet, 32 (2007), pp. 425.431
[9.]
B. Parente, H. Queiroga, E. Teixeira, et al.
Epidemiological study of lung cancer in Portugal (2000/2002).
Rev Port Pneumol, 13 (2007), pp. 255-265
[10.]
H. Takano, R. Yanagisawa, T. Ichinose, et al.
Lung expression of cytochrome P450 1A1 as a possible biomarker of exposure to diesel exhaust particles.
Arch Toxicol, 76 (2002), pp. 146-151
[11.]
R.O. McClellan.
Health effects of exposure to diesel exhaust particles.
Ann Rev Pharmacol Toxicol, 27 (1987), pp. 279-300
[12.]
A. Hirnoven.
Polymorphisms of xenobiotic-metabolizing enzymes and susceptibility to cancer.
Environ Health Perspect, 107 (1999), pp. 37-47
[13.]
E.V. Belogubova, Y.M. Ulibina, I.K. Suvorova, et al.
Combined CYP1A1/GSTM1 at-risk genotypes are overrepresented in squamous cell lung carcinoma patients but underrepresented in elderly tumor-free subjects.
J Cancer Res Clin Oncol, 132 (2006), pp. 327-331
[14.]
F.J. Gonzalez, D.W. Nebert.
Evolution of the P450 superfamily: animal plant “warfare”, molecular drive and human genetic differences in drug oxidation.
Trends in Genetics, 6 (1990), pp. 182-186
[15.]
K. Kawajiri.
CYP1A1.
IARC Sci Publ, 148 (1999), pp. 72-159
[16.]
G. Smith, M.J. Stubbins, L.W. Harries, et al.
Molecular genetics of the human cytochrome P450 monooxygenase superfamily.
Xenobiotica, 28 (1999), pp. 1129-1165
[17.]
G.F. Korytina, L.Z. Akhmadishina, O.V. Kochetova, et al.
Association of polymorphisms of the CYP1A1 and CYP1A2 cytochrome P450 genes with chronic obstructive pulmonary disease in Bashkortostan.
Molecular Biology, 1 (2008), pp. 27-36
[18.]
D.C. Spink, B.C. Spink, J.Q. Cao, et al.
Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells.
Carcinogenesis, 19 (1998), pp. 291-298
[19.]
V.V. Lyakhovich, V.A. Vavilin, N.K. Zenkov, E.B. Menshchikova.
Activated oxygen metabolites in monooxy genase reactions.
Bull Sib Otd Ross Akad Med Nauk, 118 (2005), pp. 7-12
[20.]
K. Kawajiri, K. Nakachi, K. Imai, et al.
Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene.
FEBS Lett, 263 (1990), pp. 131-133
[21.]
C.E. Hildebrand, F.J. Gonzalez, O.W. McBride, et al.
Assignment of the human 2,3,7,8-tetrachlorodibenzo-p dioxininducible cytochrome P1-450 gene to chromosome 15.
Nucleic Acids Res, 13 (1985), pp. 2009-2016
[22.]
B.J. Song, F.K. Friedman, S.S. Park, et al.
Monoclonal antibody-directed radioimmunoassay detects cytochrome P-450 in human placenta and lymphocytes.
Science, 228 (1985), pp. 490-492
[23.]
F. Crofts, G.N. Cosma, D. Currie, et al.
A novel CYP1A1 gene polymorphism in African – Americans.
Carcinogenesis, 14 (1993), pp. 1729-1731
[24.]
L.F. Masson, L. Sharp, S.C. Cotton, et al.
Cytochrome P-450 1A1 Gene Polymorphisms and risk of breast cancer: A HuGE review.
American Jornal of Epidemiology, 161 (2005), pp. 245-263
[25.]
M.T. Landi, P.A. Bertazzi, P.G. Shields, et al.
Association between CYP1A1 genotype, mRNA expression and enzymatic activity in Humans.
Pharmacogenetics, 4 (1994), pp. 242-246
[26.]
M. McGrath, S.E. Hankinson.
Cytochrome P450 1A1, cigarette smoking, and risk of endometrial cancer.
Cancer Causes Control, 18 (2007), pp. 1123-1130
[27.]
L. Le Marchand, C. Guo, S. Benhamou, et al.
Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer.
Cancer Causes and Control, 14 (2003), pp. 339-346
[28.]
P.V. Nerurkar, L. Okinaka, C. Aoki, et al.
CYP1A1, and GSTP1 genetic polymorphisms and urinary 1-hydroxypyrene excretion in non-occupationally exposed individuals.
Cancer Epidemiol Biomarkers Prev, 9 (2000), pp. 1119-1122
[29.]
S. Garte, L. Gaspari, A.K. Alexandrie, et al.
Metabolic gene polymorphism frequencies in control populations.
Cancer Epidemiol Biomarkers Prev, 10 (2001), pp. 1239-1248
[30.]
N. Drakoulis, I. Cascorbi, J. Brokmoller, et al.
Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889A to G), and a T to C mutation in the 3’-flanking region.
Clin Investig, 72 (1994), pp. 240-248
[31.]
M. Garcia-Closas, K.T. Kelsey, J.K. Wiencke, et al.
A case-control study of cytochrome P450 1A1, glutathione S-transferase M1, cigarette smoking and lung cancer susceptibility.
Cancer Cases and Control, 8 (1997), pp. 544-553
[32.]
P.G. Shields, N.E. Caporoso, R.T. Falk, et al.
Lung cancer, race and a CYP1A1 genetic polymorphism.
Cancer Epidemiol Biomark Prev, 2 (1993), pp. 481-485
[33.]
H. Sugimura, G.S. Hamada, I. Suzuki, et al.
CYP1A1 and CYP2E1 polymorphisms and lung cancer, casecontrol study in Rio de Janeiro, Brazil.
Pharmacogenetics, 5 (1995), pp. S145-S148
[34.]
S.I. Hayashi, J. Watanable, K. Nakachi, K. Kawajiri.
Genetic linkage of lung cancer-associated MspI polymorphism with amino acid replacement in the heme binding region of the human cytochrome P4501A1 gene.
J Biochem, 110 (1991), pp. 407-411
[35.]
K. Nakachi, S. Hayashi, K. Kawajiri, K. Imai.
Association of cigarette smoking and CYP1A1 polymorphisms with adenocarcinoma of the lung by grades of differentiation.
Carcinogenesis, 16 (1995), pp. 2209-2213
[36.]
L. Le Marchand, L. Sivaraman, L. Pierce, et al.
Associations of CYP1A1, GSTM1, CYP2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens.
Cancer Researcher, 58 (1998), pp. 4858-4863
[37.]
K. Nakachi, K. Imai, S. Hayashi, et al.
Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose.
Cancer Res, 51 (1991), pp. 5177-5180
[38.]
I. Peter, P. Bakker, J. Maller.
Yelensky, et al.
Evaluating and improving power in whole-gene association studies using fixed marker sets. Nature Genetics, 38 (2006), pp. 663-667
[39.]
M. Kato, A. Sekine, Y. Ohnishi, et al.
Linkage disequilibrium of evolutionary conserved regions in the human genome.
Bio Med Central Genomics, 7 (2006), pp. 326-331
Copyright © 2010. Sociedade Portuguesa de Pneumologia/SPP
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?