Journal Information
Vol. 14. Issue 1.
Pages 113-126 (January - February 2008)
Share
Share
Download PDF
More article options
Vol. 14. Issue 1.
Pages 113-126 (January - February 2008)
Artigo de Revisão/Revision Article
Open Access
Stress oxidativo na lesão pulmonar neonatal
Oxidative stress in the neonatal lung disease
Visits
4818
Gustavo Rocha1,
Corresponding author
gusrocha@oninet.pt

Correspondência: Gustavo Rocha, Serviço de Neonatologia, Unidade Autónoma de Gestão da Mulher e da Criança, Hospital de São João – Piso 2, Alameda Prof. Hernâni Monteiro, 4202 – 451 Porto, Telefone: 22 551 21 00 ext: 1949, Fax: 22 551 22 73 / 22 502 57 66.
1 Assistente Hospitalar, Serviço de Neonatologia. Unidade Autónoma de Gestão da Mulher e da Criança, Hospital de São João, Porto. Faculdade de Medicina da Universidade do Porto
This item has received

Under a Creative Commons license
Article information
Resumo

O stress oxidativo é um dos factores de risco para o desenvolvimento de displasia broncopulmonar no recém-nascido de pré-termo. Este apresenta deficiente defesa antioxidante. Por outro lado, o stress oxidativo também tem papel no crescimento e desenvolvimento celular. A relação entre stress oxidativo e crescimento celular necessita de ser melhor conhecida antes da introdução de terapêuticas antioxidantes. Várias terapêuticas antioxidantes têm sido tentadas, até ao momento sem êxito. Neste artigo é feita uma revisão da evidência do papel dos radicais livres de oxigénio na displasia broncopulmonar.

Rev Port Pneumol 2008; XIV (1): 113-126

Palavras-chave:
Displasia broncopulmonar
defesa antioxidante
recém-nascido de pré-termo
stress oxidativo
Abstract

Oxidative stress is a risk factor for bronchopulmonary dysplasia in the preterm newborn. Antioxidant defense is impaired in the preterm newborn. Oxidative stress is also involved in cell growth and development. The relationship between oxidative stress and cell growth needs to be understood before antioxidant therapy can be routinely introduced. Several antioxidant therapies have been unsuccessfully tried until now. This review highlights the importance of oxygen free radicals in the pathogenesis of bronchopulmonary dysplasia.

Rev Port Pneumol 2008; XIV (1): 113-126

Key-words:
Bronchopulmonary dysplasia
antioxidant defense
preterm infant
oxidative stress
Full text is only aviable in PDF
Bibliografia
[1.]
K. Campbell.
Intensive oxygen therapy as a possible cause of retrolental fibroplasia: a clinical approach.
Med J Aust, 2 (1950), pp. 48-50
[2.]
L. Frank, J.R. Bucher, R.J. Roberts.
Oxygen toxicity in neonatal and adult animals of various species.
J Appl Physiol, 45 (1978), pp. 699-704
[3.]
L. Frank, E.E. Groseclose.
Preparation for birth into a O2-rich environment: the antioxidant enzymes in the developing rabbit lung.
Pediatr Res, 18 (1988), pp. 501-504
[4.]
O.D. Saugstad.
Hypoxanthine as an indicator of hypoxia: its role in health and disease through free radical production.
Pediatr Res, 23 (1988), pp. 143-150
[5.]
A.H. Jobe, E. Bancalari.
Bronchopulmonary dysplasia.
Am J Respir Crit Care Med, 163 (2001), pp. 1723-1729
[6.]
A.H. Jobe.
The new bronchopulmonary dysplasia: an arrest of lung development.
Pediatr Res, 46 (1999), pp. 641-643
[7.]
J.P. Kinsella, A. Greenough, S.H. Abman.
Bronchopulmonary dysplasia.
Lancet, 29 (2006), pp. 1421-1431
[8.]
J.J. Coalson.
Pathology of chronic lung disease of early infancy.
Chronic Lung Disease of Early Infancy, pp. 85-124
[9.]
S.H. Abman.
Pulmonary hypertension in chronic lung disease of infancy. Pathogenesis, pathophysiology and treatment.
Chronic Lung Disease of Infancy, pp. 619-668
[10.]
A. Greenough, J. Alexander, S. Burguess.
Health care utilisation of prematurely born, preschool children related to hospitalisation for RSV infection.
Arch Dis Child, 89 (2004), pp. 673-678
[11.]
A.C. Koumbourlis, E.K. Motoyama, R.L. Mutich, G.B. Mallory, S.A. Walczak, K. Fertal.
Longitudinal follow-up of lung function from childhood to adolescence in prematurely born patients with chronic lung disease.
[12.]
A.M. Wilborn, L.B. Evers, A.T. Canada.
Oxygen toxicity to the developing lung of the mouse: role of reactive oxygen species.
Pediatric Res, 40 (1996), pp. 225-232
[13.]
R.N. Han, S. Buch, I. Tseu, J. Young, N.A. Christie, H. Frndova, et al.
Changes in structure, mechanics, and insulin-like growth factor-related gene expression in the lungs of newborn rats exposed to air or 60% oxygen.
Pediatr Res, 39 (1996), pp. 921-929
[14.]
O.D. Saugstad.
Bronchopulmonary dysplasia – oxidative stress and antioxidants.
Semin Neonatol, 8 (2003), pp. 39-49
[15.]
P. Zoban, M. Cerny.
Immature lung and acute lung injury.
Physiol Res, 52 (2003), pp. 507-516
[16.]
J.L. Zweir, S.S. Duke, P. Kuppusamy.
Electron paramagnetic resonance evidence that cellular oxygen toxicity is caused by generation of superoxide and hydroxy free radicals.
FEBS Lett, 252 (1989), pp. 12-16
[17.]
B.A. Freeman, J.D. Crapo.
Hyperoxia increases oxygen free radical production in rat lung mitichondria.
J Biol Chem, 256 (1981), pp. 10986-10992
[18.]
B.A. Freeman, M.K. Topolsky, J.D. Crapo.
Hyperoxia increases oxygen radical production in rat lung homogenates.
Arch Biochem Biophys, 216 (1982), pp. 477-484
[19.]
J.F. Turrens, B.A. Freeman, J.D. Crapo.
Hyperoxia increases H2 O2 release by lung mitochondria and microsomes.
Arch Biochem Biophys, 217 (1982), pp. 411-421
[20.]
T. Yusa, J.D. Crapo, B.A. Freeman.
Hyperoxia enhances lung and liver nuclear superoxide generation.
Biochim Biophys Acta, 793 (1984), pp. 167-174
[21.]
J.P. Kinsella, T.A. Parker, Galan, B.C. Sheridan, A.C. Halbower, S.H. Abman.
Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease.
Pediatr Res, 41 (1997), pp. 457-463
[22.]
S.A. Ter Horst, F.J. Walther, B.J. Poorthuis, P.S. Hiemstra, G.T. Wagenaar.
Inhaled nitric oxide attenuates pulmonary inflammation and fibrin deposition and prolongs survival in neonatal hyperoxic lung injury.
Am J Physiol Lung Cell Mol Physiol, 23 (2007),
[23.]
B.H. Yoon, R. Romero, K.S. Kim, J.S. Park, S.H. Ki, B.L. Kim, et al.
A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia.
Am J Obstet Gynecol, 181 (1999), pp. 773-779
[24.]
R.L. Auten, S.N. Mason, M.H. Whorton, W.R. Lampe, W.M. Foster, R.N. Goldberg, et al.
Inhaled ethyl nitrite prevents hyperoxia-impaired postnatal alveolar development in newborn rats.
Am J Respir Crit Care Med, 3 (2007),
[25.]
L. Frank.
Development of the antioxidant defenses in fetal life.
Semin Neonatol, 3 (1998), pp. 173-182
[26.]
A.K. Transwell, B.A. Freeman.
Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles.
Pediatr Res, 18 (1984), pp. 240-244
[27.]
E. Gerdin, O. Tyden, U.J. Eriksson.
The development of antioxidant enzymatic defense in the perinatal rat lung: activities of superoxide dismutase, glutathione peroxidase, and catalase.
Pediatr Res, 19 (1985), pp. 687-691
[28.]
F.J. Walther, A.B. Wade, D. Warburton.
Ontogeny of antioxidant enzymes in the fetal lamb lung.
Exp Lung Res, 17 (1991), pp. 39-45
[29.]
L. Frank, I.R.S. Sosenko.
Prenatal development of lung antioxidant enzymes in four species.
J Pediatr, 110 (1987), pp. 106-110
[30.]
L. Frank, I.R.S. Sosenko.
Development of lung antioxidant enzyme in late gestation: possible implications for the prematurely-born infant.
J Pediatr, 110 (1987), pp. 9-14
[31.]
L. Frank.
Antioxidants, nutrition, and bronchopulmonary dysplasia.
Bronchopulmonary Dysplasia, pp. 541-562
[32.]
A.P. Autor, L. Frank, R.J. Roberts.
Developmental characteristics of pulmonary superoxide dismutase: relationship to idiopathic respiratory distress syndrome.
Pediatr Res, 19 (1976), pp. 154-158
[33.]
S.A. Rooney.
The surfactant system and lung phospholipids biochemistry.
Am Rev Respir Dis, 131 (1985), pp. 439-460
[34.]
E. Bancalari.
Pathogenesis of bronchopulmonary dysplasia: an overview.
Bronchopulmonary Dysplasia, pp. 3-15
[35.]
J. Vina, M. Vento, F. Garcia Sala, I.R. Puertes, E. Gasco, J. Sastre, et al.
L-cysteine and glutathione metabolism are impaired in premature infants due to cystathione deficiency.
Am J Clin Nutr, 61 (1995), pp. 1067-1069
[36.]
F.V. Pallardo, J. Sastre, M. Asensi.
Physiological changes in glutathione metabolism in foetal and newborn rat liver.
Biochem J, 15 (1991), pp. 891-893
[37.]
A.C. Phylactos, A.A. Leaf, K. Costeloe, M.A. Crawford.
Erythrocyte cupric/zinc superoxide dismutase exhibits reduced activity in preterm and low birthweight infants at birth.
Acta Paediatr, 84 (1995), pp. 1421-1425
[38.]
D.W. Thibeult.
The precarious antioxidant defenses of the preterm infant.
Am J Perinatol, 17 (2000), pp. 167-181
[39.]
L. Frank, I.R.S. Sosenko.
Failure of premature rabbits to increase antioxidant enzymes during hyperoxic exposure: increased susceptibility to pulmonary oxygen toxicity compared with term rats.
Pediatr Res, 29 (1991), pp. 292-296
[40.]
B.B. Hudak, E.A. Egan.
Impact of lung surfactant therapy on chronic lung disease in premature infants.
Clinics in Perinatology, 19 (1992), pp. 591-602
[41.]
V.A. Hustead, G.R. Gutcher, S.A. Anderson.
Relationship of vitamin A (retinol) status to lung disease in the preterm infant.
J Pediatr, 105 (1984), pp. 610-615
[42.]
G.R. Gutcher, W.J. Reynor, P.M. Farrel.
An evaluation of vitamin E status in premature infants.
Am J Clin Nutri, 40 (1984), pp. 1078-1089
[43.]
W.A.R. Huijbers, J. Schrijvers, A.J. Speek.
Persistent low plasma vitamin E in premature infants surviving respiratory distress syndrome.
Eur J Pediatr, 145 (1986), pp. 170-171
[44.]
J.A. Omene, A.C. Longe, J.C. Ihongbe.
Decreased umbilical cord serum ceruloplasmin concentrations in infants with hyaline membrane disease.
J Pediatr, 99 (1981), pp. 136-138
[45.]
W. Rosenfeld, L. Concepcion, H. Evans.
Serial trypsin inhibitory capacity and ceruloplasmin levels in prematures at risk for bronchopulmonary dysplasia.
Am Rev Respir Dis, 134 (1986), pp. 1229-1232
[46.]
P.A. Walravens.
Nutritional importance of copper and zinc in neonates and infants.
Clin Chem, 26 (1980), pp. 185-189
[47.]
M. Van Caille-Bertand, H.J. Degenhart, J. Fernandes.
Selenium status of infants on nutritional support.
Acta Paed Scand, 73 (1984), pp. 816-821
[48.]
W. Rosenfeld.
Clinical evidence of oxidant injury in bronchopulmonary dysplasia.
Bronchopulmonary Dysplasia, pp. 42-48
[49.]
D.S. Bonikos, K.G. Bensch.
Pathogenesis of bronchopulmonary dysplasia.
Bronchopulmonary Dysplasia, pp. 33-58
[50.]
F.J. Kelly, J. Lubec.
Hyperoxide injury of immature guinea pig lung is mediated via hydroxyl radicals.
Pediatr Res, 38 (1995), pp. 286-291
[51.]
L.B. Clerch, A.E. Wright, J.J. Coalson.
Lung manganese superoxide dismutase protein expression increases in the baboon model of bronchopulmonary dysplasia and is regulated at a posttranscriptional level.
Pediatr Res, 39 (1996), pp. 253-258
[52.]
R.M. Moison, A.J. de Beaufort, A.A. Haasnot, T.M. Dubbelman, D. van Zoeren-Grobben, H.M. Berger.
Uric acid and ascorbic acid redox ratios in plasma and tracheal aspirate of preterm babies with acute and chronic lung disease.
Free Radic Biol Med, 23 (1997), pp. 226-234
[53.]
T. Ogihara, R. Okamoto, H.-S. Kim, A. Nagai, T. Morinobu, H. Moji, et al.
New evidence for the involvement of oxygen radicals in triggering neonatal chronic lung disease.
Pediatr Res, 39 (1996), pp. 117-119
[54.]
G. Lubec, J.A. Widness, M. Hayde, D. Menzel, A. Pollak.
Hydroxyl radical generation in oxygen-treated infants.
Pediatrics, 100 (1997), pp. 700-704
[55.]
B.C. Schock, D.G. Sweet, H.L. Halliday, I.S. Young, M. Ennis.
Oxidative stress in lavage fluid of preterm infants at risk of chronic lung disease.
Am J Physiol Lung Cell Mol Physiol, 281 (2001), pp. 1386-1391
[56.]
L.A.J.M. Creuwels, L.M.G. van Golde, H.P. Haagsman.
The pulmonary surfactant system: biochemical and clinical aspects.
Lung, 175 (1997), pp. 1-39
[57.]
J.R. Wright.
Immunomodulatory functions of surfactant.
Physiol Rev, 77 (1997), pp. 931-962
[58.]
H.P. Haagsman.
Oxidative damage of the pulmonary surfactant system.
Semin Neonatol, 3 (1998), pp. 207-217
[59.]
R.S. Oostig, J.F. Van Iwaarden, L. van Bree.
Exposure of surfactant protein A to ozone in vitro and in vivo impairs its interactions with alveolar cells.
Am J Physiol, 262 (1992), pp. L63-L68
[60.]
H.P. Haagsman, E.A.J.M. Schuurmans, J.J. Batenbur.
Synthesis of phosphatidylcholines in ozone-exposed alveolar type II cells isolated from adult rat lung: is glycerolphosphate acyltransferase a rate-limiting enzyme?.
Exp Lung Res, 14 (1988), pp. 1-17
[61.]
I.M. Gladstone, R.L. Levine.
Oxidation of proteins in neonatal lungs.
Pediatrics, 93 (1994), pp. 764-768
[62.]
E. Varsila, E. Pesonem, S. Andersson.
Early protein oxidation in the neonatal lung is related to development of chronic lung disease.
Acta Paediatr, 84 (1995), pp. 1296-1299
[63.]
E. Varsila, O. Pitkanen, M. Hallman, S. Andersson.
Immaturity dependent free radical activity in premature infants.
[64.]
E. Varsila, M. Hallman, S. Andersson.
Free-radicalinduced lipid peroxidation during the early neonatal period.
Acta Paediatr, 83 (1994), pp. 692-695
[65.]
O.M. Pitkanen, M. Hallman, S.M. Andersson.
Correlation of free oxygen radical-induced lipid peroxidation with outcome in very low birthweight infants.
J Pediatr, 116 (1990), pp. 760-764
[66.]
Graham P. Inder TE, K. Sanderson, B.J. Taylor.
Lipid peroxidation as a measure of oxygen free radical damage in the very low birthweight infant.
Arch Dis Child Fetal Neonatal Ed, 70 (1994), pp. 101-111
[67.]
T. Ogihara, K. Hirnao, T. Morinobu, H.-S. Kim, M. Hiroi, H. Ogihara, et al.
Raised concentration of dehyde lipid peroxidation products in premature infants with chronic lung disease.
Arch Dis Child Fetal Neonatal Ed, 80 (1999), pp. 21-25
[68.]
W. Dik, R.R. De Krijger, L. Bonecamp, B.A.E. Naeber, J.I. Zimmermann, M.A. Versneh.
Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia.
[69.]
D.G. Sweet, K.J. McMahon, A.G. Curley, C.M. O´Connor, H.L. Halliday.
Type 1 collagenases in bronchoalveolar lavage fluid from preterm babies at risk of developing chronic lung disease.
Arch Dis Child Fetal Neonatal Ed, 84 (2001), pp. 168-171
[70.]
K. Cerederquist, T. Sorsa, T. Tervahantiala, P. Maisi, K. Reunanen, P. Lassus, et al.
Matrix metalloproteinas-es-2,-8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress.
Pediatrics, 108 (2001), pp. 686-692
[71.]
S.E. Welty.
Is there a role for antioxidant therapy in bronchopulmonary dysplasia?.
J Nutr, 131 (2001), pp. 947S-950S
[72.]
J.E. Tyson, L.L. Wright, W. Oh, K.A. Kennedy, L. Mele, R.A. Ehrenkranz, et al.
Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network.
N Engl J Med, 340 (1999), pp. 1962-1968
[73.]
J.L. Watts, R. Milner, A. Zipursky, B. Paes, E. Ling, G. Gill, et al.
Failure of supplementation with vitamin E to prevent bronchopulmonary dysplasia in infants less than 1,500g birth weight.
Eur Respir J, 4 (1991), pp. 188-190
[74.]
R.V. Padmanabhan, R. Gudapaty, I.E. Liener, B.A. Schwartz, J.R. Hoidal.
Protection against pulmonary oxygen toxicity in rats by intratracheal administration of lipo-some-encapsulated superoxide dismutase or catalase.
Am Rev Respir Dis, 132 (1985), pp. 164-167
[75.]
O.D. Saugstad, M. Halman, G. Becher, A. Oddoy, B. Lachmann.
Respiratory failure caused by intratracheal saline: additive effect of xanthine oxidase.
Biol Neonate, 54 (1988), pp. 61-67
[76.]
O.D. Saugstad, G. Becher, M. Grossman, A. Oddoy, G. Merker, B. Lachmann.
Acute and chronic lung damage in guinea pigs induced by xanthine oxidase.
Intensive Care Med, 13 (1987), pp. 30-32
[77.]
J.M. Davis.
Superoxido dismutase: a role in the prevention of chronic lung disease.
Biol Neonate, 74 (1998), pp. 29-34
[78.]
J.M. Davis, S.E. Richter, S. Biswas, W.N. Rosenfeld, L. Parton, I.H. Gewolb, et al.
Long term follow-up of premature infants treated with prophylactic, intratracheal recombinant human CuZn superoxide dismutase.
J Perinatol, 20 (2000), pp. 213-216
[79.]
J.M. Davis.
Role of oxidant injury in the pathogenesis of neonatal lung disease.
Acta Paediatr Suppl, 437 (2002), pp. 23-25
[80.]
G.K. Suresh, J.M. Davis, R.F. Soll.
Superoxide dismutase for preventing chronic lung disease in mechanically ventilated preterm infants.
Cochrane Database Syst Rev, 1 (2001), pp. 001968
[81.]
F.M. Bany-Mohammed, S. Slivka, M. Hallman.
Recombinant human erythropoietin: possible role as antioxidant in premature rabbits.
Pediatr Res, 40 (1996), pp. 381-387
[82.]
G.A.B. Russell, R.W.I. Cooke.
Randomised controlled trial of allopurinol prophilaxis in very preterm infants.
Arch Dis Child Fetal Neonatal Ed, 73 (1995), pp. F27-F31
[83.]
T. Ahola, R. Lapatto, K.O. Raivio, D. Selander, L. Stigson, B. Jonsson, et al.
N-acetylcystein (NAC) does not prevent bronchopulmonary dysplasia (BPD) in extremely low birth weight infants (ELBEI).
Pediatric Academic Societies Lecture, (2002),
[84.]
K.J. Collard, S. Godeck, J.E. Holley, M.W. Quinn.
Pulmonary antioxidant concentrations and oxidative damage in ventilated premature babies.
Arch Dis Child Fetal Neonatal Ed, 89 (2004), pp. 412-416
Copyright © 2008. Sociedade Portuguesa de Pneumologia/SPP
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?