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Abstract

Introduction and objectives: Asthma is a chronic inflammatory disease of the airways. Asthma

patients may experience potentially life-threatening episodic flare-ups, known as exacerbations,

which may significantly contribute to the asthma burden. The Pi*S and Pi*Z variants of the SER-

PINA1 gene, which usually involve alpha-1 antitrypsin (AAT) deficiency, had previously been asso-

ciated with asthma. The link between AAT deficiency and asthma might be represented by the

elastase/antielastase imbalance. However, their role in asthma exacerbations remains unknown.

Our objective was to assess whether SERPINA1 genetic variants and reduced AAT protein levels

are associated with asthma exacerbations.

Materials and methods: In the discovery analysis, SERPINA1 Pi*S and Pi*Z variants and serum AAT

levels were analyzed in 369 subjects from La Palma (Canary Islands, Spain). As replication, geno-

mic data from two studies focused on 525 Spaniards and publicly available data from UK Biobank,

FinnGen, and GWAS Catalog (Open Targets Genetics) were analyzed. The associations between

SERPINA1 Pi*S and Pi*Z variants and AAT deficiency with asthma exacerbations were analyzed

with logistic regression models, including age, sex, and genotype principal components as

covariates.

Results: In the discovery, a significant association with asthma exacerbations was found for both

Pi*S (odds ratio [OR]=2.38, 95% confidence interval [CI]= 1.40�4.04, p-value=0.001) and Pi*Z

(OR=3.49, 95%CI=1.55�7.85, p-value=0.003)Likewise, AAT deficiency was associated with a

higher risk for asthma exacerbations (OR=5.18, 95%CI=1.58�16.92, p-value=0.007) as well as

AAT protein levels (OR= 0.72, 95%CI=0.57�0.91, p-value=0.005). The Pi*Z association with exac-

erbations was replicated in samples from Spaniards with two generations of Canary Islander ori-

gin (OR=3.79, p-value=0.028), and a significant association with asthma hospitalizations was

found in the Finnish population (OR=1.12, p-value=0.007).

Conclusions: AAT deficiency could be a potential therapeutic target for asthma exacerbations in

specific populations.

© 2023 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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Introduction

Asthma is a common chronic respiratory disease character-
ized by episodes of wheezing, coughing, shortness of breath,
and airflow limitation, which vary over time and intensity.1

Moreover, about 75% of asthma patients also present
atopy.1,2 Asthma is considered a complex disease with a mul-
tifactorial background, in which genetic factors are known
to play a significant role, with heritability ranging between
35% and 95%.2 Among European countries, Spain exhibits var-
iation in asthma prevalence, the Canary Islands having the
highest prevalence (18%) compared to the rest of the Span-
ish regions (4% on average).3-5

While asthma symptoms may resolve spontaneously or in
response to preventive medication, some patients with
asthma may experience episodic flare-ups, known as exacer-
bations. The most widely used definition of asthma

exacerbations comprises the administration of systemic cor-
ticosteroids, emergency room visits, or hospitalizations.6

These episodes not only negatively impact the patient’s
quality of life, long-term lung function, work productivity,
and/or school attendance, but can also be life-threatening.1

Likewise, the associated socioeconomic burden extends to
caregivers, the healthcare system, and the whole
community.1

Among the asthma-associated genetic factors, the serpin
family A member 1 gene (SERPINA1) participates in the
development of several respiratory diseases, including
asthma,7,8 and it is also associated with atopy in asthma
patients.9 SERPINA1 gene encodes alpha-1 antitrypsin (AAT),
the most abundant antiprotease in the human serum,10 plays
a fundamental role as a serine protease inhibitor, protecting
the lower respiratory tract against neutrophil elastase, in
addition to having other immunomodulatory and anti-
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inflammatory properties.11 When serum levels of AAT
decrease below a protective threshold,12 reduced protec-
tion against elastase activity in the lung could lead to alveoli
degradation.13

Different SERPINA1 gene variants are known to produce
AAT deficiency (AATD), which is considered one of the most
common hereditary disorders of European descent popula-
tions.14 AATD is diagnosed by measurement of AATserum lev-
els and characterization of AAT isoforms by protein
isoelectric focusing (Pi*AAT phenotypes). Pi*M is considered
the reference AAT variant, associated with normal AAT lev-
els, while two canonical Pi*AAT variants, known as Pi*Z and
Pi*S, have been classically associated with AATD.15 Pi*Z vari-
ant is related to severe AATD,16 and is caused by a missense
mutation (p.Glu342Lys, rs28929474) in the SERPINA1 gene,
with a minor allele frequency (MAF) < 1%, reaching the high-
est MAF in European populations (2%). Pi*S variant is related
to moderate AATD and is produced by another missense
mutation of the SERPINA1 gene (p.Glu264Val, rs17580) with
the highest MAF in European-descent populations (6%)17.
Interestingly, the Spanish population shows the highest
allele frequency for this polymorphism among the popula-
tions from the 1000 Genomes project (9.3%).18

To the best of our knowledge, the association of SERPINA1
classic genetic variants with asthma exacerbations has not
been studied yet. In this sense, populations of the Canary
Islands are interesting due to the elevated asthma preva-
lence in this region, and the unique genomic features found
in the different islands.19,20 Indeed, novel defective SER-

PINA1 alleles have been characterized in La Palma island,21

where frequencies of Pi*S and Pi*Z alleles are higher than
expected.22 In the present work, we performed the first
genetic association study of SERPINA1 variants with asthma
exacerbations, considering subjects with asthma from La
Palma Island as a model. In addition, were attempted to rep-
licate our findings in Canary Islanders, mainland Spanish sub-
jects, and other European populations.

Methods

Discovery and replication populations

Patients enrolled in Characterizing Alpha-1-Antitrypsin Defi-

ciency in patients with pulmonary diseases (CAATDPUL)23

study were included in the discovery cohort. The CAATDPUL
study was approved by the Ethics Committee of La Palma
General Hospital, with the reference/date HGLa-
Palma_2010_7/ September 26, 2010. Patients enrolled in
The Genomics and Metagenomics of Asthma Severity

(GEMAS)24 cohort and in the Study of the mechanisms

involved in the genesis and evolution of asthma (MEGA)25

were included in the replication phase. The GEMAS and
MEGA studies were approved by the respective Clinical
Research Ethics Committee of participating centers (appro-
vals 29/17 for the Canary Islands hospitals and PI2019077
Hospital Universitario Donostia in the GEMAS study, and EOH
2014/48 from Hospital Universitario Fundaci�on Jim�enez Díaz
in the MEGA study). All patients under 18 years old provided
their assent (with signature for those aged 12�17 years),
and one of their legal guardians signed the informed con-
sent. All participants older than 18 years old provided their

informed consent to participate in the study. A full descrip-
tion of each cohort can be found elsewhere.23-25

Details related to AAT quantification, genomic DNA
extraction, genotyping, and quality control (e-Appendix 1)
are described in the Supplementary Material. Moreover, the
open-access integrative resource Open Targets Genetics

(version 7),26 which integrates summary results of genetic
association studies of the GWAS Catalog, FinnGen, and UK
Biobank studies, was used for in silico assessment of replica-
tion in other European populations.

Statistical analyses

Subjects who experienced hospitalizations, emergency room
visits, and/or oral corticosteroids in the last 12 months were
selected as cases.6 In contrast, controls did not experience
any of these events for the same period. The definition of
exacerbations was identical for the discovery and replica-
tion populations. The association of AATD, AAT levels, or
SERPINA1 genetic variants with asthma exacerbations was
tested through logistic regression models following an addi-
tive genetic model for the rs17580 and rs28929474 polymor-
phisms.

Deficient SERPINA1 genotypes (Pi*MS, Pi*SS, Pi*MZ, Pi*SZ,

and Pi*ZZ) were compared with the reference genotype
(Pi*MM). AATD was defined as a binary variable based on the
AAT protein levels (<80 or �80 mg/dl).27 AAT levels were
also analyzed as a continuous variable with a Box-Cox nor-
malization to obtain a normal distribution. Age, sex, and PCs
from the genotype data that summarized most of the
genetic variability in allele frequencies were included in the
regression models as covariates. The 29 subjects simulta-
neously genotyped from dried blood spots and fresh blood
were considered in CAATDPUL and removed from further
analysis in GEMAS. Statistical significance was declared after
applying a Bonferroni correction for the two genetic variants
tested (p-value � 0.025). Sensitivity analyses were con-
ducted and are explained in e-Appendix 2.

In the replication phase, association analyses were per-
formed following the same methodology as in the discovery
phase. In the GEMAS study, replication analyses were con-
ducted stratifying the subjects by having or not two genera-
tions of Canary Islander origin. All analyses were performed
using the statistical program R 3.6.3.28

Results

Quality control, demographic, and clinical

characteristics of all study populations

After QC, 369 subjects from CAATDPUL, 383 from GEMAS,
and 138 from MEGA populations were retained for subse-
quent analyses (e-Appendix 2, e-Figure 1). For subjects
simultaneously genotyped from dried blood spots and fresh
blood, we observed a concordance rate of 99.2%, confirming
the suitability of dried blood spot samples for genome-wide
genotyping without loss of accuracy and coverage (total gen-
otyping rate of 99.7%). The main demographic and clinical
characteristics of the discovery population are shown in
Table 1. No significant differences were found between
cases and controls for age, sex, smoking behavior, lung
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function measurements, and total IgE levels. Cases showed
higher eosinophils levels (p-value=0.007), had a higher pro-
portion of subjects requiring inhaled corticosteroids (ICS)
(p-value=0.022), and more patients with AATD in comparison
with controls (p-value=0.007). In contrast, controls showed
higher AAT levels when subjects with chronic airway obstruc-
tion were excluded (p-value=0.038) and a higher proportion
of controlled asthma (p-value<0.01).

Demographic and clinical characteristics available for the
two replication datasets (GEMAS and MEGA) are shown in
Table 2. In the GEMAS whole study, controls were slightly
older than cases (p-value=0.04), while this difference was
not found in subjects with two generations of Canary Islands
origin. In contrast, in the MEGA study, cases were older than
controls (p-value=0.007). Similar to CAATDPUL, GEMAS cases
had a higher proportion of ICS use than controls (p-val-
ue<0.001), but no difference was observed in MEGA. In addi-
tion, cases showed lower pulmonary function than controls

in the MEGA population (p-value<0.01). Finally, cases pre-
sented a higher proportion of asthma partially or poorly con-
trolled in all populations (p-value<0.001).

Association analysis in the discovery phase

In the CAATDPUL cohort, a significant association of AAT pro-
tein levels was found, showing higher levels a protective
effect against asthma exacerbation (odds ratio [OR]= 0.72,
95%CI=0.57�0.91, p-value=0.005). AATD was associated
with an increased risk for asthma exacerbations (OR=5.18,
95% CI: 1.58�16.92, p-value=0.007). SERPINA1 deficient var-
iants Pi*S (OR=2.38, 95%CI=1.40�4.04, p-value=0.001) and
Pi*Z (OR=3.49, 95%CI=1.55�7.85, p-value=0.003) were asso-
ciated with asthma exacerbations (Table 3). Likewise, the
associations of Pi*S and Pi*Z alleles, AAT levels, and AATD
with asthma exacerbations were consistent in the analyses
that excluded subjects with chronic airflow obstruction.

Table 1 Demographic and clinical variables of subjects from La Palma Island (enrolled by CAATDPUL between 2011 and 2015)

included in the discovery phase.

Characteristic All subjects n = 369 Subjects without chronic airway obstruction n = 335

Controls

(n = 231)

Cases (n = 138) p-value Controls

(n = 207)

Cases (n = 128) p-value

Age (years) 47 (31�61) 42 (32�65) 0.519 45 (30�60) 41 (29�63) 0.611

Sex (females),

n (%)

150 (65) 99 (72) 0.207 135 (65) 93 (73) 0.185

Ever smoker, n

(%)

79 (34) 38 (28) 0.204 68 (33) 33 (28) 0.180

Pulmonary function

FEV1 (% pre-

dicted)

95 (83�103) 94 (83�103) 0.872 95 (85�104) 94 (85�104) 0.716

FVC (% pre-

dicted)

95 (86�104) 94 (85�104) 0.374 96 (86�104) 94 (85�104) 0.580

FEV1/FVC (%

predicted)

80 (73�85) 81 (75�86) 0.587 80 (75�86) 82 (76�86) 0.605

IgE levels (UI/

ml)

93 (32�264) 107 (35�305) 0.300 92 (32�264) 111 (37�307) 0.267

Eosinophil

counts

(cells/ml)

200 (136�319) 300 (200�400) 0.007 200 (200�300) 300 (200�450) 0.021

Asthma control, n (%)

Well

controlled

137 (62) 47 (36) 1.94£10�6 121 (61) 44 (36) 1.15£10�5

Partially/

Poorly

controlled

84 (38) 85 (64) 1.94£10�6 76 (39) 78 (64) 1.15£10�5

ICS use, n (%) 215 (93) 136 (99) 0.022 193 (93) 126 (98) 0.034

AATD, n (%) 4 (2) 11 (8) 0.007 4 (2) 10 (8) 0.022

AAT levels (mg/

dl)

128 (115�141) 125 (109�139) 0.057 129 (115�141) 124 (110�139) 0.038

A comparison of demographic and clinical characteristics between controls and cases was performed for all CAATDPUL subjects or exclud-

ing patients with chronic airway obstruction. The normality of continuous variables (age, pulmonary function variables, IgE levels, eosino-

phils counts, and AAT levels) was evaluated using the Shapiro-Wilk test and then summarized with the median and interquartile range (in

brackets). Categorical variables (sex, ever smoker, asthma control, ICS use, and AATD) were summarized as counts for each group and per-
centages (in brackets). Predicted values of lung function measurements were estimated using the Global Lung Function Initiative (GLI)

2012 equations. Statistically significant differences between groups were evaluated either with Mann-Whitney U or Fisher’s exact tests,

for continuous and categorical variables, respectively. Statistically significant differences between groups (p-values<0.05) are depicted

in boldface. Abbreviations: AATD: Alpha-1-antitrypsin deficiency; ACT: Asthma control test; FEV1: Forced expiratory volume in the first
second; FVC: Forced vital capacity; ICS: inhaled corticosteroid; IgE: Immunoglobulin E; n: sample size.
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Table 2 Demographic and clinical variables in the replication populations (GEMAS and MEGA).

Characteristic GEMAS MEGA

All subjects

n = 387

Canary Islands origin

n = 223

All subjects

n = 138

Controls

(n = 194)

Cases

(n = 192)

p-value Controls

(n = 135)

Cases

(n = 88)

p-value Controls

(n = 90)

Cases

(n = 48)

p-value

Age (years) 33 (19�53) 30 (13�48) 0.040 38 (25�53) 43 (22�51) 0.691 44 (36�53) 54 (44�60) 0.007

Sex (female), n (%) 107 (55) 118 (61) 0.217 80 (59) 59 (67) 0.261 63 (70) 35 (73) 0.844

Ever smoker, n (%) 49 (25) 46 (24) 0.814 40 (30) 30 (34) 0.554 35 (39) 23 (48) 0.259

Pulmonary function

FEV1 (% pre-

dicted)

91 (82�102) 89 (77�101) 0.129 91 (77�100) 87 (73�97) 0.237 95 (81�93) 78 (64�93) 6.47£10�4

FVC (% pre-

dicted)

96 (84�104) 93 (84�103) 0.332 95 (82�104) 88 (81�90) 0.118 104 (94�112) 95 (79�107) 0.008

FEV1/FVC (%

predicted)

80 (75�86) 80 (72�85) 0.548 78 (74�84) 80 (71�85) 0.908 80 (72�87) 75 (67�79) 0.009

IgE levels (UI/ml) 215 (68�905) 206 (60�674) 0.317 184 (53�740) 193 (63�750) 0.910 164 (70�388) 209 (70�536) 0.416

Eosinophil counts

(cells/ml)

335 (200�600) 345 (110�570) 0.408 340 (22�610) 400 (150�600) 0.878 300 (200�500) 400 (198�700) 0.221

Asthma control, n (%)

Well controlled 84 (66) 59 (39) 1.36£10�5 51 (64) 19 (29) 5.23£10�5 69 (82) 19 (42) 7.50£10�6

Partially/Poorly

controlled

44 (34) 92 (61) 1.36£10�5 29 (36) 46 (71) 5.23£10�5 15 (18) 26 (58) 7.50£10�6

ICS use, n (%) 152 (78) 177 (92) 1.86£10�6 108 (80) 80 (91) 0.010 87 (97) 48 (100) 0.551

Comparison of demographic and clinical characteristics between controls and cases was performed for GEMAS (including all subjects, or only patients with two generations of Canary Islander
origin), and MEGA populations. The normality of continuous variables (age, pulmonary function variables, IgE levels, and eosinophils counts) was evaluated with the Shapiro-Wilk test, and

then summarized with the median and interquartile range (in brackets). Categorical variables (sex, ever smoker, asthma control, and ICS use) were summarized as counts for each group and

percentages (in brackets). Predicted values of lung function measurements were estimated using the Global Lung Function Initiative (GLI) 2012 equations.
Statistically significant differences between groups were evaluated either with Mann-Whitney U or Fisher’s exact tests, for continuous and categorical variables, respectively. Statistically sig-

nificant differences between groups (p-values<0.05) are depicted in boldface. Abbreviations: ACT: Asthma control test; FEV1: Forced expiratory volume in the first second; FVC: Forced vital

capacity; ICS: inhaled corticosteroid; IgE: Immunoglobulin E; n: sample size.
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Moreover, all the associations retained their significance in
models adjusted for smoking history, BMI, and ICS use (e-
Table 1).

In the assessment of alternative outcomes, associations
were found (e-Table 2) for AATD with ACT level (p-
value=0.017) and Pi*MS genotype with asthma severity (p-
value=0.014), but not for other variables.

Association analysis in the replication phase

We next examined deficient variants for association with
asthma exacerbations in the replication cohorts. The associ-
ation between the Pi*Z variant and asthma exacerbations
was nominally replicated in a subset of GEMAS patients that
had four grandparents from the Canary Islands (OR=3.79,
95%CI=1.16�12.43, p-value=0.028) (Table 4). However, the
association of Pi*S variant with asthma exacerbations was
not significant in this subset of patients. Moreover, none of
the associations between deficient variants and asthma
exacerbations were validated when all subjects from GEMAS
or MEGAwere considered (Table 4).

An in-silico assessment in other European populations via
Open Targets Genetics revealed a significant association of
the Pi*Z variant with asthma (OR=2.35, p-value=2.3 £ 10�3)
and only in the Finnish population (OR=1.16, p-
value=1.1 £ 10�4).26 In addition, a significant association of
Pi*Z with asthma hospitalizations (OR=1.12, p-
value=6.5 £ 10�3) in Finnish population26 was found but not
in other European populations.

Discussion

To the best of our knowledge, this is the first study examin-
ing the association of AATD and SERPINA1 variants with
asthma exacerbations. A higher level of AAT was associated
with a protective effect for asthma exacerbations among
Canary Islanders from La Palma. In addition, AATD, consid-
ered when serum protein level was below 80 mg/dl, was
associated with a higher risk for asthma exacerbations. In
the same population, the rs17580 (Pi*S) and rs28929474
(Pi*Z) SERPINA1 variants were associated with a higher risk

of asthma exacerbations. The rs28929474 signal was repli-
cated in an independent sample of the Canary Islands and
Finnish populations, but not in other Spanish or European
populations.

Several genes have been associated with predisposition
to this flare-up episode,29-36 but in-depth studies, carried
out in additional populations, are necessary to identify the
whole genetic component involved in asthma exacerbations.
Nevertheless, AATD is considered an underdiagnosed dis-
ease, as only about 10% of patients are estimated to be prop-
erly diagnosed.37 Therefore, the scarce AATD diagnosis bias
could underestimate its association with asthma. Since AAT
is the main inhibitor of neutrophilic serine proteinase and
acts as an important anti-inflammatory protein with pro-
nounced immunomodulatory activity, the link between AATD
and asthma might be represented by the elastase/antielas-
tase imbalance caused by AATD. Alternatively, the proin-
flammatory effect caused by AAT serum levels reduction
could also underlie the association found.7 Interestingly, a
previous study observed that protein levels of AAT are ele-
vated during asthma exacerbations,38 which agrees with our
findings.

Despite the important role of SERPINA1 variants in
COPD,27 the associations found were not driven by this con-
dition, as they remained significant when all asthmatic
patients with pulmonary obstruction were excluded from
the analysis. Moreover, the association of AATD with asthma
severity was also confirmed by analyzing asthma control val-
ues as an alternative outcome. Given that IgE and eosinophil
levels are related to allergic asthma,39 and the high preva-
lence of atopy in the Canary Islands,5 we evaluated the asso-
ciation of SERPINA1 variants and genotypes with these
phenotypes. However, no associations were found in this
case, suggesting the SERPINA1 variants are not directly
involved in the immunomodulation of the allergic response
in these individuals. In previous studies, the Pi*Z variant has
been associated with smoking behavior17, and the Pi*S vari-
ant has been mainly associated with the risk of developing
COPD in smokers.17 However, our associations of Pi*S and
Pi*Z alleles, AAT levels, and AATD with asthma exacerbations
were not explained by smoking history, body mass index, or
ICS use.

Table 3 Association analysis results obtained between asthma exacerbations and SERPINA1 genetic variants, classic genotypes,

and AATD, as well as their frequencies in the discovery population and adjusting by age, sex, and principal components.

AAT levels/AATD/

Variant/Genotype

All subjects n = 369 Subjects without chronic airway obstruction n = 335

OR (95%CI) p-value Frequency OR (95%CI) p-value Frequency

AAT levels 0.72 (0.57�0.91) 0.005 NA 0.68 (0.53�0.87) 0.002 NA

AATD 5.18 (1.58�16.92) 0.007 15 (4.0) 5.18 (1.58�16.92) 0.015 14 (4.2)

Pi*S 2.38 (1.40�4.04) 0.001 65 (8.8) 2.38 (1.40�4.04) 0.002 59 (8.8)

Pi*Z 3.49 (1.55�7.85) 0.003 28 (3.8) 3.49 (1.55�7.85) 0.003 26 (3.9)

Pi*MS 1.93 (1.03�3.62) 0.039 49 (13.3) 1.93 (1.03�3.62) 0.071 43 (12.8)

Pi*MZ 2.64 (1.09�6.42) 0.032 22 (6.0) 2.64 (1.09�6.42) 0.047 20 (6.0)

Pi*SS 8.90 (0.94�84.26) 0.057 5 (1.4) 8.90 (0.94�84.26) 0.064 5 (1.5)

Pi*SZ NA NA 6 (1.6) NA NA 6 (1.8)

AATD frequency was summarized as counts and% frequency (in brackets). The frequency of variants and genotypes were summarized as

allele/genotype count and minor allele frequency/genotype percentages (in brackets). Statistically significant p-values after Bonferroni

correction are depicted in boldface (p-value<0.025). Abbreviations: AATD: Alpha-1 antitrypsin deficiency; CI: Confidence interval; NA:

Not available (beta coefficient or standard deviation >10); n: sample size; OR: Odds ratio.
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The associations found in the discovery population moti-
vated us to assess the validation in Spanish subjects consid-
ering the overall population and a subset of individuals with
two generations of Canary Islands origin. The latter compari-
son allowed us to evaluate the possible existence of a popu-
lation-specific effect. It is known that populations from the
Canary Islands present a recent admixture involving North
African, European, and sub-Saharan African ancestry with
variable ancestry, depending on the island.40 Although no
relationship has been found between genetic ancestry and
asthma when individuals from different islands of the Canary
Archipelago were analyzed,41 studies based on island-spe-
cific populations are yet to be addressed. In this sense, evi-
dence of validation was found for the association of
rs28929474 (Pi*Z) with asthma exacerbations in Canary
Islanders, but not in other Spanish populations.

The rs28929474 (Pi*Z) variant was also associated with
asthma hospitalizations in the Finnish population, suggesting
the possibility that a founder effect in certain isolated popu-
lations could cause an increase in SERPINA1 deficient alleles
associated with the risk of asthma exacerbations. In this
sense, the lack of replication in the independent populations
from mainland Spain may be due to differences in allele fre-
quencies among the discovery and replication populations.
In previous studies,38,42 a high frequency of both polymor-
phisms was found among Spanish individuals, where the Pi*S

and Pi*Z variants have a frequency of 10 and 2%, respec-
tively.43 Interestingly, the frequency of the Pi*Z variant in
our study was higher in La Palma (3.8%), followed by Canary
Islanders from GEMAS (3.1%), and mainland Spaniards from
MEGA (1.1%). In the case of the Finnish population, the fre-
quency of Pi*Z was only two times lower than in La Palma
(1.9%), but the frequency of Pi*S was about 10 times lower
(0.8%), which could explain the lack of replication of the
Pi*S variant in this population.

To the best of our knowledge, the present work repre-
sents the first evidence of the association of AATD and SER-

PINA1 classic variants with asthma exacerbations. Moreover,
we have demonstrated the robustness of the results by
including strict quality control procedures and considering
multiple demographic and clinical confounders in the associ-
ation analyses. Additionally, we have analyzed different
populations, not only genotyped in our study but also from
different public databases queries.

Nonetheless, some limitations must be considered. First,
the Pi*S association with asthma exacerbations was not vali-
dated in all populations analyzed in the replication stage.
Although the association found could be population specific,
the lack of replication could also be due to the reduced sta-
tistical power derived from the smaller sample size in the
non-Canary Islander replication set of samples. Second, dif-
ferent endotypes of asthma were not assessed and could
underlie the different results obtained in the cohorts ana-
lyzed. Third, AAT serum levels were not available in GEMAS
and MEGA. Therefore, it was not possible to confirm the
association between AATD and asthma exacerbations in the
replication phase. Fourth, other possible confounding fac-
tors were not evaluated, for example, atopy, rhinitis, or
other individual or environmental conditions, since data was
not available for all cohorts, and these uncontrolled condi-
tions could mask the associations in the replication popula-
tions. Fifth, the recruitment of patients is heterogeneous
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between studies since CAATDPUL enrolled patients from the
Pneumonology unit only, but GEMAS and MEGA enrolled
patients from Pneumonology and Allergology units. Despite
correcting the regression models by the recruitment center,
this feature could be another reason for the lack of replica-
tion. Additionally, differences in the environment could also
affect the associations through gene-environment interac-
tions.

Sixth, rare variants can also cause AATD, and such type of
variation was not assessed. Therefore, future sequencing
efforts analyzing the whole spectrum of genetic variation in
the SERPINA1 gene could reveal additional associations with
asthma exacerbations.

Personalized medicine has shown the existence of drugs
with application to specific populations.44 In this sense, it
could be helpful to measure AAT serum levels and assess the
SERPINA1 genetic variants in asthmatic patients routinely in
clinical practice to detect carriers of SERPINA1 deficient var-
iants, during which implementing AAT replacement therapy
could be a potential treatment to reduce asthma exacerba-
tions. This approach would especially be relevant to patients
who do not respond to other asthma treatments, in order to
decrease disease morbidity and mortality.

Conclusions

We describe for the first time the association of the SER-

PINA1 gene Pi*S (rs17580) and Pi*Z (rs28929474) variants,
AAT levels, and AATD with asthma exacerbations in patients
from La Palma (Canary Islands, Spain). In addition, the asso-
ciation of the Pi*Z allele, the most important SERPINA1 vari-
ant in clinical practice, was validated in another set of
Canary Islanders and individuals from the Finnish population.
This suggests AATD is a potential therapeutical target for
treating asthma exacerbations in specific populations.
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