

PULMONOLOGY

REVIEW

Issue 1 - "Update on adverse respiratory effects of outdoor air pollution" Part 2): Outdoor air pollution and respiratory diseases: Perspectives from Angola, Brazil, Canada, Iran, Mozambique and Portugal

A.C. Sousa^{a,b}, M.R. Pastorinho^{b,c}, M.R. Masjedi^d, M. Urrutia-Pereira^e, M. Arrais^{f,g}, E. Nunes^{h,i}, T. To^j, A.J. Ferreira^{k,l}, C. Robalo-Cordeiro^{k,l}, C. Borrego^{m,n}, J.P. Teixeira^{o,p}, L. Taborda-Barata^{b,q,r,*}

^a Comprehensive Health Research Centre (CHRC) and Department of Biology, University of Évora, Pólo da Mitra, Apartado 94, Évora 7002-554, Portugal

^b NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal

^c Comprehensive Health Research Centre (CHRC), Department of Medical and Health Sciences, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, Évora 7000-671, Portugal

^d Department of Pulmonary Medicine, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg n 2, SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran

^e Universidade Federal do Pampa, BR 472 – Km 585, Caixa Postal 118, Uruguaiana (RS) CEP 97501-970, Brazil

^f Department of Pulmonology, Military Hospital, Rua 17 de Setembro, 27/29, Cidade Alta, Luanda, Angola

 $^{\rm g}$ Centro de Investigação em Saúde de Angola - CISA, Caxito, Bengo, Angola

^h Department of Pulmonology, Central Hospital of Maputo, Agostinho Neto, 64, Maputo 1100, Mozambique

ⁱ Faculty of Medicine, Eduardo Mondlane University, Avenida Dr. Salvador Allende, Caixa Postal 257, Maputo, Mozambique

 $^{
m j}$ The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5G 1 imes 8, Canada

^k Department of Pulmonology, Centro Hospitalar Universitário de Coimbra, Praceta Prof. Mota Pinto, Coimbra 3004-561, Portugal

¹ Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra 3000-548, Portugal

^m CESAM & Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal

ⁿ IDAD — Instituto do Ambiente e Desenvolvimento, Campus Universitário de Santiago, Aveiro 3810-193, Portugal

° EPIUnit – Instituto de Saúde Pública, University of Porto, Rua das Taipas, 135, Porto 4050-091, Portugal

^p Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal

^q UBIAir-Clinical & Experimental Lung Centre, UBIMedical, University of Beira Interior, EM506 Covilhã 6200-000, Portugal

^r CICS-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal

Received 9 December 2021; accepted 12 December 2021 Available online 12 May 2022

https://doi.org/10.1016/j.pulmoe.2021.12.007

^{*} Corresponding author at: UBIAir-Clinical & Experimental Lung Centre, UBIMedical, University of Beira Interior, EM506 Covilhã 6200-000, Portugal.

E-mail address: tabordabarata@fcsaude.ubi.pt (L. Taborda-Barata).

^{2531-0437/© 2022} Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

KEYWORDS Air pollution; Asthma; Chronic respiratory diseases; COPD; GARD; Portugal

Abstract

Objective: To analyse the GARD perspective on the health effects of outdoor air pollution, and to synthesise the Portuguese epidemiological contribution to knowledge on its respiratory impact.

Results: Ambient air pollution has deleterious respiratory effects which are more apparent in larger, densely populated and industrialised countries, such as Canada, Iran, Brazil and Portugal, but it also affects people living in low-level exposure areas. While low- and middle-income countries (LMICs), are particularly affected, evidence based on epidemiological studies from LMICs is both limited and heterogeneous. While nationally, Portugal has a relatively low level of air pollution, many major cities face with substantial air pollution problems. Time series and cross-sectional epidemiological studies have suggested increased respiratory hospital admissions, and increased risk of respiratory diseases in people who live in urban areas and are exposed to even a relatively low level of air pollution.

Conclusions: Adverse respiratory effects due to air pollution, even at low levels, have been confirmed by epidemiological studies. However, evidence from LMICs is heterogeneous and relatively limited. Furthermore, longitudinal cohort studies designed to study and quantify the link between exposure to air pollutants and respiratory diseases are needed. Worldwide, an integrated approach must involve multi-level stakeholders including governments (in Portugal, the Portuguese Ministry of Health, which hosts GARD-Portugal), academia, health professionals, scientific societies, patient associations and the community at large. Such an approach not only will garner a robust commitment, establish strong advocacy and clear objectives, and raise greater awareness, it will also support a strategy with adequate measures to be implemented to achieve better air quality and reduce the burden of chronic respiratory diseases (CRDs).

© 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Worldwide, chronic respiratory diseases (CRDs) are one of the five leading causes of morbidity and mortality of noncommunicable diseases (NCD), according to the World Health Organization (WHO).¹ Furthermore, the Forum of International Respiratory Societies (FIRS) considers chronic obstructive pulmonary disease (COPD) and asthma, pneumonia, tuberculosis and lung cancer as the five most prevalent pulmonary diseases.² Together, they contribute significantly to the increasing global burden of NCD.^{3–7}

To better elucidate various aspects of CRDs and to support countries and organizations globally dealing with CRDs, the Global Alliance against chronic Respiratory Diseases (GARD) was established in 2006 as a voluntary alliance of medical and scientific societies, patients' associations, and governmental institutions with WHO.⁸ The main objective of GARD is to reduce the global burden of CRDs so that the world will be a place where all people breathe freely. In particular, GARD focuses on the needs of people suffering from CRDs in low- and middle-income countries (LMIC).⁹ This is especially relevant since LMICs have a disproportionately high burden of the CRD-associated morbidity and mortality.¹⁰

Air pollution is a significant risk factor for CRDs, and with well documented adverse health impacts on human,^{11–16} especially in GARD countries.^{17–20} Health effects range from minor irritation of the upper respiratory system to serious chronic respiratory and cardiac disorders, as well as worsening of cardiac and pulmonary diseases, premature mortality and decreased life expectancy.^{21,22} Short-term exposure to air pollution may contribute to worsening of respiratory

symptoms in people with asthma or COPD,^{23,24} while continuing or long-term exposures seem to increase the risk of development of COPD in those with asthma, therefore acquiring features of asthma COPD overlap (ACO).²⁵ Furthermore, air pollution has a substantial impact on quality of life in those who are living with CRDs,^{12,13} and novel, non-respiratory, health effects have been described in a joint document of the American Thoracic Society/European Respiratory Society (ATS/ERS).^{11,26}

Regarding mortality, the WHO 2016 Report²¹ on ambient air pollution suggested that 4.2 million deaths every year occur as a result of exposure to ambient air pollution. According to the estimates of the Global Burden of Disease (GBD), air pollution was the fifth major risk factor of death in the world, accounting for 7.6% of all deaths globally in 2015.^{16,27–29} A more recent GBD study in 2020 showed that approximately 12% of all deaths in 2019 were due to the combined effects of indoor and outdoor pollution.³⁰

Despite successful attempts to reduce air pollution in advanced industrial countries, mortality resulting from air pollution exposure has not decreased across GARD countries.³⁴ On the contrary, with the increasing level of air pollution, a rise in the number of deaths resulting from NCD has been noted in LMICs¹⁶ and GARD countries,³¹ especially in the more vulnerable population (e.g., people of lower socioeconomic status), compounding a disproportional risk.^{32,33}

In Portugal, in spite of a global reduction in pollutant emission, air quality has not improved accordingly for all pollutants. The annual emission and air quality trends in Portugal in 2009–2015 have been studied.³⁵ Although the emissions of carbon monoxide (CO), nitrogen dioxide (NO₂), sulphur oxides (Sox), and particulate matter (PM_{10}) showed

a general decreased trend in the study period, there was also a notable increasing trend towards in the last two years studied. Based on a comparative analysis of the spatial distribution of emissions available for 2009 and 2015,³⁶ several points were highlighted: higher emissions, mainly of NO₂ and PM₁₀, were verified in industrial areas and urban centres; Lisbon Metropolitan Area was the most problematic region in terms of emissions of all pollutants; the North region had a reduction of PM₁₀ emissions, compared with the other regions; NO₂ emissions showed an increase in most of the country.³⁵

The 2020 Report of the European Environment Agency (https://www.eea.europa.eu/publications/air-quality-ineurope-2020-report) showed that years of life lost attributable to air pollutants in Portugal, in 2018 per 10^5 inhabitants were 541 for PM_{2.5}, 84 for NO₂, and 42 for O₃, whereas the number of premature deaths were 4900 for PM_{2.5}, 750 for NO₂, and 370 for O₃. Although these levels are lower than those in most other European countries, they represent an average value for the country and are less representative of the situation in more urbanized and industrialized cities such as Lisbon and Porto. Thus, it is paramount to more accurately depict the impact of outdoor air pollution in Portugal by reporting or stratifying findings by a more refined geographical unit (such as by region).

Methods

This narrative review is divided into two main topics: a *perspective from some GARD countries*, and the *Portuguese perspective*. The GARD view includes some general comments on the societal burden of CRDs as well a brief analysis of the role of various ambient air pollutants on CRD-related outcomes. This is further exemplified by the experience of some GARD countries: Iran, Canada, Brazil, Angola and Mozambique. The Portuguese perspective aims to summarise the main findings of epidemiological studies on the relationship between estimates of global and specific outdoor air pollutants and some of the most relevant CRD-related outcomes.

The perspective from some GARD countries (Angola, Brazil, Canada, Iran, and Mozambique)

A view on the problem of ambient air pollution and its impact on respiratory health was elaborated by country level GARD coordinators and this was complemented by country-specific literature searches on the topic. The analysis included Medline searches on PubMed and Embase databases from inception (of records in each database) to 30 October 2021, using the following search terms "outdoor air pollution" and "respiratory health" AND "Iran" or "Canada" or "Brazil" or "Angola" or "Mozambique". Only studies on the relationship between ambient air pollution and respiratory outcomes were included in this narrative review.^{37,76}

The Portuguese perspective

The Portuguese perspective aimed to summarise evidence collected by studies on ambient air pollution and CRDs carried out in Portugal only, and was based on a non-systematic review of the literature. Searches were carried out in PubMed, Embase, and SciELO, as primary sources, from inception to 30 October 2021, using the following search terms "outdoor air pollution", AND "respiratory health", or "asthma", or "wheezing", or "chronic bronchitis", or "COPD" and "Portugal". As secondary sources, additional references found by authors' review were also included. All observational and analytical epidemiological studies, including cohort, case-control and cross-sectional studies, using traditional epidemiological approaches and/or statistical modelling, written in any language, were accepted. A total of 81 articles was retrieved. All articles were screened by two independent authors. After screening of titles, abstracts and full text, 29 articles were selected.^{77–105} Studies not including respiratory outcomes were excluded.

Results

Some examples from GARD countries from around the world (Table 1)

Iran

Some studies on air pollution in Iran have shown that CO and particulate matter were the most important air pollutants at concentrations higher than standard values, especially in Tehran, with association with respiratory signs and symptoms.³⁷ Research on the association between ambient air pollution and CRDs such as asthma and COPD showed a relationship between hospital admissions due to exacerbations of these diseases and levels of various air pollutants in major populated cities, 38-40 namely in terms of interaction with weather variables.^{41,42} A positive relationship between asthma and air pollutants was also more significant in more "urban" (and polluted) than in more "rural" control sites.⁴³ Finally, studies fully based on statistical modelling of the distribution of diverse air pollutants and various CRDs (with a focus on asthma) have also shown a positive association.44-47 However, the Iranian society had not received any appropriate or efficient training and awareness regarding air pollution, in spite of the deleterious effects of air pollution on respiratory health in populated cities being alarming.48

Canada

Canada is one of few countries (9%) where air quality is within the WHO recommended limits. Nevertheless, several cohort studies were carried out in the country and yielded relevant results. A first cohort study found that early life exposure to oxidant air pollutants (O₃ and NO₂) was associated with an increased risk of incident asthma and eczema in children.⁴⁹ In addition, other cohort studies, performed in major Canadian cities, have also shown various positive associations: between various air pollutants (namely PM_{2.5}, NO₂, O_3 and O_x) and the incidence of COPD in adults⁵⁰; between exposure to ultrafine particles (UFP) and COPD (although this association was lost when exposure was adjusted for NO_2 ⁵¹; and between long-term exposure to iron (Fe), copper (Cu), and reactive oxygen species (ROS) and the incidence of asthma and COPD, COPD mortality, pneumonia mortality and overall respiratory mortality. The associations were more robust for COPD, and mortality from overall

Author and year of publication	Country and locality or region	Exposure	Population group	Health outcome	Type of study, year and analysis	Main conclusions
Namvar et al, 2020 ³⁷	Tehran, Iran	PM _{2.5} , PM ₁₀ , SO ₂ , CO	Children < 7 years-old attending day care centres	Cough, phlegm, wheezing, chest pain, current or past asthma, "bronchitis"	Cross-sectional (2015); anal- ysis using crude and adjusted logistic regression analyses	Long-term exposure to air pollutants near the home: (a) CO - associated with increased risk of persistent phlegm (OR = 1.40; 95% CI = 1.09-1.81); (b) NO ₂ , and SO ₂ associated with increased risk of current asthma
Masjedi et al, 2003 ³⁸	Tehran, Iran	PM ₁₀ , SO ₂ , CO, O ₃ , NO ₂ , THC (mean 3-, 7- and 10-day levels)	Adult patients residing in Tehran for at least 2 years, with acute asthma or COPD exacerbations, admitted to hospitals	Number of emergency admis- sions due to acute asthma or COPD exacerbations	Time series (5 months; 1997-1998); anal- ysis using multiple stepwise regression; time-series analysis	Positive correlation between ER admissions for acute asthma and: (a) exposure to SO_2 – mean 3-day levels ($r = 0.24$; $p = 0.049$), and mean 10-day levels ($r = 0.56$; $p = 0.019$); (b) exposure to NO_2 – mean 7-day levels ($r = 0.28$; $p = 0.049$).
Khalilzadeh et al, 2009 ³⁹	Tehran, Iran	PM ₁₀ , SO ₂ , CO, O ₃ , NO ₂	Patients admitted to Emer- gency units due to acute asthma or cardiovascular complaint	Number of emergency admis- sions due to acute asthma or cardiovascular conditions	Time series (12 months; 2004-2005); analysis using non-adjusted Pearson correlation	Significant positive correlation (r) between number of admissions for cardiopulmonary complaints and levels of: (a) CO ($r = 0.731$; p = 0.016); (b) PM ₁₀ ($r = 0.752$; p = 0.012).
Raji et al, 2020 ⁴⁰	Ahvaz, Iran	PM _{2.5} , PM ₁₀ , SO ₂ , CO, O ₃ , NO ₂ , NO	Adults (elderly and non- elderly) admitted to hospi- tals due to asthma, COPD or bronchiectasis exacerbations	Number of hospital admis- sions due to acute asthma, COPD or bronchiectasis exacerbations	Time series (2008-2018); analysis using adjusted Quasi-Poisson regression	Increased ER admissions for asthma were significantly associated with (a) $PM_{2.5}$ levels (RR = 1.004; 95% CI = 1.002-1.007); (b) NO_2 levels (RR = 1.040; 95% CI = 1.008-1.074); (c) SO_2 levels (RR = 1.069; 95% CI = 1.017-1.124). Increased ER admissions for COPD were significantly associated with (a) $PM_{2.5}$ levels (RR = 1.003; 95% CI = 1.002-1.005); (b) NO_2 levels (RR = 1.049; 95% CI = 1.010-1.090); (c) CO levels (RR = 1.641; 95% CI = 1.233-2.191). Significant associations also seen with PM_{10} levels and bronchiectasis.
Masoumi et al, 2017 ⁴¹	Ahvaz, Iran	PM ₁₀ , SO ₂ , CO, O ₃ , NO ₂ , NO _x	Adults admitted to hospitals due to acute respiratory complaints (rainfall associ- ated bronchospasm epidemic period versus non-epidemic period)	Number of emergency admis- sions due to acute respira- tory complaints (shortness of breath, wheezing, coughing and phlegm)	Case-control (2011-2015); analysis using binomial regression	Significant positive relationship between ER respiratory admission and each unit of increase in NO (adjRR = 1.008; 95% Cl = 1.001- 1.016; p = 0.037) and SO ₂ (adjRR =1.014; 95% Cl = 1.000-1.028; p = 0.044) levels during the epidemic periods, and NO ₂ (adjRR =1.010; 95% Cl = 1.001-1.019; p = 0.023) levels during the nonepi- demic periods.
Geravandi et al, 2017 ⁴²	Ahvaz, Iran	PM ₁₀	Adults admitted to hospitals due to asthma attacks, acute bronchitis and COPD (dusty days versus non-dusty days)	Number of emergency hospi- taladmissions due to acute respiratory complaints (HARD) – asthma, acute bronchitis, COPD	Case-control (2010-2012); analysis using correlation analysis (dust events and PM ₁₀ -related hospital admissions)	Number of HARD admissions was associated with the highest daily PM ₁₀ concentrations, in 2010-2012, and this was more significant o dusty days (correlations varying between 0.53 and 0.62).
Shakerkha- tibi et al, 2021 ⁴³	3 villages (1 in industrial area; 1 with potential urban air pollu- tion; 1 with no potential air pollution) in northwest Iran	PM ₁₀ , SO ₂ , NO ₂ , Volatile Organic Compounds (VOC), benzene, toluene, xylenes	Children and adolescentes from the 3 villages	Prevalence of asthma	Cross-sectional (2016); anal- ysis using two-step hierarchi- cal logistic regression modeling and latent class analysis (LCA)	Higher probability of severe asthma (6.8%) in the "industrial area" village than in the other two villages (2.6% and 1.8%). Adjusted odds of moderate and severe asthma were lower in the control villages than in the "industrial area" village (ORs 0.135 - 0.697).

Pulmonology 28 (2022) 376-395

Author and	Country and	Exposure	Population group	Health outcome	Type of study, year and	Main conclusions
year of publication	locality or region	Exposure	ropation group	neuten outcome	analysis	
Shakerkha- tibi et al, 2021 ⁴⁴	Urmia, Iran	PM _{2.5} , PM ₁₀	Adults admitted to hospitals for asthma, chronic bronchi- tis, emphysema and COPD	Number of daily hospital admissions for asthma, chronic bronchitis, emphy- sema and COPD	Case crossover; analysis using conditional logistic regression	In the adjusted model, an increment of PM ₁₀ and PM _{2.5} increased the risk of admissions for asthma by 1.124 (95% CI =1.062-1.191), and 1.117 (95% CI = 1.055-1.184), respectively. Also for PM _{2.5} , the esti- mated OR was 1.5-fold higher in women (OR = 1.078 (95% CI = 1.037-1.121) than in men (OR = 1.032 (95% CI = 0.996-1.069).
Razavi-Ter- meh et al, 2021 ⁴⁶	Tehran, Iran	$PM_{2.5}$, PM_{10} , SO_2 , CO , O_3 , NO_2 (and distance to parks and streets)	Clinical records of asthmatic children (Hospital Informa- tion System)	Children with asthma living in Tehran	(2019); analysis using geo- statistical methods including spatial autocorrelation and Random Forest machine learning model	Distribution of asthma was not random, and occurrence of the disease was affected by environmental conditions. $PM_{2.5}$, PM_{10} , distance to park, distance to street had a stronger spatial correlation.
To et al, 2020 ⁴⁹	Toronto, Canada	PM _{2.5} , O ₃ , NO ₂ (and greeness)	Children of the T-CHEQ study	Incident asthma, rhinits and eczema	Cohort (average of 17 years – up to 2016); analysis using Cox proportional hazards regression models (single, multipollutant, and oxidants models); Moran's I was to measure spatial autocorrela- tion and clustering	At birth and / or first 3 years of life exposures to NO ₂ and O ₃ were associated with an increased risk of incident asthma - adjusted Hazard ratios (adHR) between 1.14 and 1.23) or eczema (adHR between 1.05 and 1.07) in children, particularly in those \leq 4 yearsold.
Shin et al, 2021 ⁵⁰	Ontario, Canada	PM _{2.5} , O ₃ , O _x , NO ₂	Adults from the Ontario Pop- ulation Health and Environ- ment Cohort (ONPHEC), without respiratory diseases	Incident asthma and COPD	Cohort; analysis using Cox proportional hazards model; stratified analysis; sensitivity analyses	Every interquartile range increase in $PM_{2.5},NO_2,O_3$ and O_x was consistently associated with 3-7% higher incidences of COPD, but not asthma, in adults.
Weichenthal et al, 2017 ⁵¹	Toronto, Canada	Ultra-fine par- ticles (UFP), NO ₂	30-100 year old adults from ONPHEC, without respiratory diseases	Incident asthma, COPD and lung cancer	Cohort (1996-2012); analysis using random-effect Cox pro- portional hazard models	No clear evidence of positive association between long-term expo- sure to UFP and respiratory disease independently of other pollutants.
Zhang et al, 2021 ⁵²	Toronto, Canada	Iron (Fe) and copper (Cu) in PM _{2.5}	40-85 year-old adults from (ONPHEC), without respira- tory diseases	Incident asthma, COPD, COPD mortality, pneumonia mortality, respiratory mor- tality; generation of reactive oxygen species (ROS)	(2001-2016); analysis using land-use regression model; estimation of ROS levels; mixed-effects Cox propor- tional hazard regression models; sensitivity analyses; Shape Constrained Health Impact Function	Positive association between long-term exposure to Fe, Cu and ROS and risks for all respiratory outcomes.
Stieb et al, 2009 ⁵⁴	7 cities, Canada	PM _{2.5} , PM ₁₀ , SO ₂ , CO, O ₃ , NO ₂ ,	Records of children and adults visting ER due to acute cardiovascular or respiratory reasons,	ER visits for asthma, COPD, respiratory infections (or cardiovascular reasons)	Time-series (1990s-early 2000s); analysis using gener- alized linear models adjusted for meteorological conditions and city-specific conditions	O ₃ had the most consistent associations with ER visits for asthma (3.2%; 95% Cl = 0.3–6.2% per 18.4 pp(b), and COPD (3.7%; 95% Cl = 0.5–7.9% per 18.4 pp(b). PM ₁₀ and PM _{2.5} were strongly associated with asthma visits in the warm season: 14.4% increase in visits (95% Cl = 0.2–30.7) per 20.6 μ g/m ³ PM ₁₀ , and 7.6% increase in visits (95% Cl = 5.1–10.1), per 8.2 μ g/m ³ PM _{2.5}).
Stieb et al 2000 ⁵⁵	St. John, Canada	$PM_{2.5}, PM_{10},$ $SO_2, O_3, SO_4^{(2-)},$ Coefficient of	Records of individuals visting ER due to acute cardiovascu- lar or respiratory reasons	ER visits for asthma, COPD (or cardio vascular reasons)	Time series (1992-1996); analysis using single and mul- tiple pollutant models with	In single-pollutant models, positive association between all pollu- tants (except for NO ₂ and COH) and asthma visits, and positive effects on all respiratory diagnosis groups were observed for O ₃ ,

Author and year of publication	Country and locality or region	Exposure	Population group	Health outcome	Type of study, year and analysis	Main conclusions
		Haze (COH), aeroallergens			stepwise procedures and sen- sitivity analyses	$SO_2,PM_{2.5},PM_{10},andSO_4^{(2-)}.$ In multipollutant models, pollutant gases, particularly O_3 and SO_2 exhibited more consistent effects.
Weichenthal et al, 2016 ⁵⁶	15 cities across Ontario, Canada	PM _{2.5} , influence of oxidative potential of PM _{2.5}	Children and adults with asthma or COPD, residing in the studied cities, who attended ER due to exacer- bations of their respiratory illness	Risk of ER visits due to asthma, COPD and all respi- ratory outcomes (ICD 10th revision: codes J00-J99)	Time-stratified case cross- over (2004-2011); analysis using conditional logistic regression, adjusted for time-varying covariates	$\rm PM_{2.5}$ levels were associated with ER visits for all respiratory illnesses. Glutathione-related oxidative potential modified the impact of low concentrations of $\rm PM_{2.5}.$
Moraes et al, 2019 ⁵⁹	São Paulo, Brazil	Air tempera- ture, relative humidity, pre- cipitation, PM ₁₀	Children (0-9 years-old)	Hospitalizations for respira- tory diseases	Longitudinal study (2003- 2013); analysis using general- ised linear models with nega- tive binomial distribution, and distributed lag non-lin- ear model	Significant high risk association between air temperature, relative humidity, rainfall and PM_{10} and hospitalizations for respiratory diseases. For $PM_{10} (> 35\mu g/m^3)$ for total sample and for female sex, the highest RR were 1.299 (95% CI = 1.045 – 1.614), and 1.512 (95% CI = 1.914 -2.067), respectively.
Carvalho et al, 2018 ⁶⁰	Porto Alegre, Brazil	NO ₂ , O ₃ (mea- sured in individ- ual filters given to the two stud- ied groups)	Healthy, male, professional bikers (index group), and office workers (control group)	Oxidative stress and genetic damage	Cross-sectional study (2016); analysis using Mann-Whitney U test or Chi-square test, and multiple linear regression analysis	$\begin{array}{l} NO_2 \mbox{ and } O_3 \mbox{ levels in filters were significantly higher in bikers than in office workers:} \\ (a) NO_2: 106.77 \pm 20.17 \ \mu g/m^3/h \ versus 14.18 \pm 3.69 \ \mu g/m^3/h, respectively; \\ (b) \ O_3: 225.03 \pm 45.47 \ \mu g/m^3/8 \ h \ versus 12.14 \pm 3.85 \ \mu g/m^3/8 \ h. \\ NO_2 \ and \ O_3 \ levels \ and showed \ a \ strong \ positive \ correlation \ with plasma lipid \ peroxidation \ in \ bikers. \end{array}$
Santos et al, 2016 ⁶¹	São Paulo, Brazil	PM _{2.5}	Non-smoking workers (taxi drivers, traffic controllers, forest rangers)	Lung function	Longitudinal study (2008- 2012); workers attended 4 weekly visits, for 1 month	Compared to workers in the lowest exposed group (forest rangers), those with the highest level of exposure had significantly reduced predicted FVC and increased predicted FEF _{25-75%} /FVC.
Ribeiro et al, 2019 ⁶²	São Paulo, Brazil	Traffic density, NO ₂	Adults living in two city zones with diferente socioeco- nomic status (richer and poorer areas)	Incident respiratory cancer; Respiratory cancer mortality	Longitudinal study (2002- 2013); analysis using age- adjusted binomial negative regression models	Increased rate of respiratory cancer incidence and mortality in association with increased traffic density and NO ₂ levels, and this was stronger in the poorer areas. For NO ₂ in poorest regions, the incidence rate ratio (IRR) for mortality in the highest exposed group was 1.44 (95% Cl = $1.10 - 1.88$) while in the least deprived area, the IRR for the highest exposed group was 1.11 (95% Cl = $1.01 - 1.23$).
Agudelo- Casta- ñeda et al, 2019 ⁶³	5 cities in south Brazil	PM ₁₀ , PM _{2.5,} NO ₂ , O ₃	Hospital admissions data for children, adults and elderly individuals	Respiratory hospitalizations	Ecological time-series (2013- 2016); analysis using adjusted multivariable Pois- son regression models	An increase of $10 \ \mu g/m^3$ in the monthly average concentration of PM ₁₀ was associated with an increase of respiratory hospitalization in all age groups; for NO ₂ and SO ₂ , stronger intermediate-term effects were found in 6-15 year-old children; for O ₃ , higher effects were found in children < 1 year.
Bravo et al, 2016 ⁶⁴	São Paulo, Brazil	PM ₁₀ , NO ₂ , CO, SO ₂ , O ₃	Adults \geq 35 years-old	Non-accidental, cardiovascu- lar and respiratory mortality (number of daily deaths)	Case cross-over, longitudinal study (1996-2010); analysis using fitted conditional logis- tic regression models	Increased risk of respiratory mortality were significantly associated with all pollutants, in both sexes, and 35-64 and 65-74 age ranges, OR associated with an IQR increase in air pollutant concentrations between 1.16 and 3.81, mostly with 1-day lag.
Costa et al., 2017 ⁶⁵	São Paulo, Brazil	PM ₁₀ , NO ₂ , CO	Elderly (deaths registered at the Mortality Information Improvement Program)	Non-accidental and cause- specific mortality	Daily time series (2000- 2011); analysis using Poisson generalized additive models	PM ₁₀ , NO ₂ , and CO exposures were associated with short-term mor tality displacement for nonaccidental and circulatory, but not respiratory, deaths.

		ns .PM _{2.5} -	e associ-	ith hospi- elderly. respira- ar and for a %RR ought, tl 10µg/
		Premature deaths contributed by biomass burning emissions between July and September made up 10% of total annual PM _{2.5} - related premature deaths.	Hospital admissions for respiratory diseases in children were signifi- cantly correlated with humidity in the rainy season and the associ- ation with PM _{2.5} was negative (R = -0.168; p = 0.003).	In Alta Floresta, increased PM _{2.5} levels were associated with hospi- tal admissions for respiratory diseases in children and the elderly. The % increases in relative risk (%RR) of hospitalization for respira- tory diseases in children were significant for the whole year and for the dry season (6%; 95% Cl = 1.4-10.8) with 3-4 day lags. The %RR for the elderly was significant for the current day of the drought, with a 6.8% increase (95% Cl = 0.5-13.5) for each additional $10\mu g/$ m ³ of PM _{2.5} .
		uted by biomas: ber made up 10	Hospital admissions for respiratory diseases in childre cantly correlated with humidity in the rainy season al ation with PM _{2.5} was negative (R = -0.168; p = 0.003).	$IPM_{2.5}$ levels we ory diseases in . ory diseases in . irisk (%RR) of h. <i>e</i> re significant = 1.4-10.8) with ant for the curr. CI = 0.5-13.5) fd
	usions	Premature deaths contribu between July and Septemb related premature deaths.	lmissions for re: elated with hur PM _{2.5} was nega	esta, increased ons for respirat aases in relative es in children v ison (6%; 95% Cl erly was signific 6 increase (95% 5
	Main conclusions	Premature between J related pre	Hospital ac cantly corr ation with	In Alta Flore tal admission The % increase tory disease the dry seass for the elder with a 6.8% i m ³ of PM _{2.5} .
	ear and	ialysis using 3EOS-Chem g, with sensi- ind risk	of time 19); analysis orrelation and egression	of time nalysis using ittive models ors
	Type of study, year and analysis	(2018; 2019); analysis using computational GEOS-Chem adjoint modeling, with sensi- tivity analysis, and risk assessment	Ecological study of time series (2002-2009); analysis using Pearson correlation and multiple linear regression	Ecological study of time series (2005); analysis using generalized additive models with Poisson errors
	Health outcome	Premature deaths due to COPD, lung cancer, acute lower respiratory illness (ALRI) (and ischemic heart disease, and stroke)	Hospital admissions for respi- ratory diseases	Hospital admissions for respi- ratory diseases
	Неа	Prer COP low(ALF	Hosi	Hos rato
	Population group	Various age groups		Children and elderly
	Populatio	Various a	Children	Children
	Exposure	PM _{2.5} from bio- mass burning (forest fires)	PM _{2.5} (from burning bio- mass), meteoro- logical conditions	PM _{2.5} (from burning of biomass)
inued)	Country and locality or region	Amazonia, Brazil	Manaus, Brazil	Tangará da Serra and Alta Flor- esta, Brazil
Table 1 (Continued)		ά ⁰ 8		
Table 1	Author and year of publication	Nawaz & Henze, 2020 ⁶⁸	Andrade Filho et al., 2013 ⁷³	Ignotti et al., 2010 ⁷⁶

respiratory causes or from pneumonia.⁵² Finally, a study using population data from Ontario (the largest province in Canada), found that adult individuals exposed to higher levels of air pollution (namely $PM_{2.5}$ and O_3) had nearly three-fold greater odds of developing ACO.²⁵

Furthermore, various studies using statistical modelling have also shown positive associations: between overall pollution indices (including "floating" particles and SO₂) and acute respiratory illnesses⁵³; between O₃ (even at low levels) and asthma- and/or COPD-related hospital visits⁵⁴⁻⁵⁷; and between PM_{2.5} and asthma as well as COPD emergency room (ER) visits.⁵⁶ Interestingly, two of the previous studies also showed that concomitant factors may influence these relationships: warmer seasons may promote a stronger association between ambient air PM_{2.5} and PM₁₀ levels and asthma hospital visits^{54;}; in addition, between-city differences in glutathione-related oxidative potential may modulate the impact of low levels of PM_{2.5} on asthma and COPD hospital visits⁵⁶.

These studies suggest that there is no safe level of air pollution and that improving air quality will contribute to the prevention of asthma and other allergic disease in childhood and adolescence, and possibly COPD and ACO, in adults.

Brazil

Brazil ranks sixth among the largest greenhouse gases emitters, representing 3.2% of the world total. Per capita emissions are also higher than the world average. In 2019, the average CO₂ emission per Brazilian was 10.4 gross tons, against 7.1% of the world average.⁵⁸ Urban climate change, excessive air pollution and increased social inequalities have become determining factors for the high risk of hospitalizations for respiratory diseases.⁵⁹ One study showed that professional motorcyclists who suffer prolonged exposure to air pollution have worsening of pre-existing respiratory diseases.⁶⁰ Furthermore, exposure to different levels of trafficrelated PM_{2.5} was significantly associated with a reduction in forced vital capacity (FVC) of workers in the city of São Paulo.⁶¹ Traffic density and NO₂ were also associated with an increased rate of incidence and mortality from cancer in the respiratory system in residents of poor regions in the city of São Paulo.⁶² In addition, a study carried out in southern Brazil reported an increase in hospital admissions for respiratory causes in all age groups with every 10 μ g/m³ increase in the average monthly concentration of PM₁₀.⁶³ An increased risk of non-accidental mortality from cardiovascular and respiratory diseases was shown in a study to be significantly associated with exposure to NO₂, SO₂ and CO, but not to O₃.⁶⁴ In addition, a significant association between exposure to PM₁₀, NO₂ and CO and non-accidental deaths and circulatory diseases in elderly residents in São Paulo has been documented.65

Besides urban pollution, forest fire-related air pollution is also a problem in Brazil.⁶⁶ During the 2019 fire season, premature deaths were attributed to fire emissions and accounted for 10% of all $PM_{2.5}$ -related premature deaths in the country.^{67,68} During periods of active fire, $PM_{2.5}$ was significantly associated with inflammatory respiratory effects,^{69,70} and respiratory morbidity including asthma, COPD, bronchitis and pneumonia.^{71–73} Furthermore, poor socioeconomic conditions increase the association between exposure to $PM_{2.5}$ due to forest fire and ER visits and hospitalizations for asthma and heart failure.^{74–77}

Thus, public policies are needed in Brazil, to enhance the communication by public health professionals to the exposed populations, so that actionable information and guidelines are more effectively shared such that health and quality of life can be improved.

Angola and Mozambique

In Angola, although there is no nationwide air quality monitoring network, there are examples of some monitoring projects, such as in Luanda.¹⁰⁶ The General State of the Environment Report, produced by the Ministry of Urbanism and Environment (MINUA), in 2006, showed a worrying picture of indoor and outdoor air quality which was dominated by gas emissions from traffic, electric generators, industry, burning of solid waste in streets, and biomass combustion in poorly aerated sites, all of which can induce serious respiratory problems.¹⁰⁷ This is further compounded by the fact that, although there are studies on the prevalence and clinical features of asthma in children and adolescents from Luanda, which showed high levels, ^{108,109} there are currently no epidemiological data on the prevalence of asthma or COPD in adults. Furthermore, no studies have been carried out in Angola, on the relationship between outdoor air pollution and respiratory diseases.

In Mozambigue, the Environmental Law, the assessment of the Environmental and Regulatory Impact of Health and Safety, and other laws which include Industrial and Environmental Emission Patterns, the Regulations for Environmental Auditing and Inspection, among others, constitute the main legislation which regulates air pollution issues.^{110,111} Just like in Angola, the degree of industrialization in Mozambique is still low in general, but high in and around the bigger cities such as Maputo, Beira and Matola. In these locations, pollution may result, among other reasons, from the combined effect of obsolete equipments and lack of significant protection regulations for the population against dangerous pollution sources,¹¹² and also from waste management problems and automobile traffic-related emissions (CO_2 , CO_2 , NO_x).¹¹³ In addition, uncontrolled bush burning in rural zones, mainly in the north and centre of the country, is one of the main sources of pollutants.^{114,115} In fact, measurements of pollutants, which began in 1996, showed that burning of biomass was the main source of particulate matter pollution, followed by industrial activities.¹¹⁵ There is also significant emission of CO_2 , methane (CH₄) and NO_2 in production, transportation and utilisation of vegetable coal in certain areas of the country.¹¹⁶ Finally, there is intense exploitation of coal in open pit mines in the province of Tete, and this type of mining is associated with air pollution and a high rate of respiratory diseases in those areas, particularly in children.¹¹⁷ However, there are no published studies on the effects of outdoor air pollution on respiratory diseases in Mozambigue.

Thus, it is crucial that research studies on such relationship are carried out both in Angola and in Mozambique, and also that a broad effort to raise awareness is implemented, involving multiple stakeholders as well as the community, in integrated research – societal effort¹¹⁸ so that environmental research may result in prevention, mitigation and minimization measures, reducing the associated burden and costs,¹¹⁹ aligned with the "Declaration of Libreville on Health and Environment in Africa"¹²⁰ and the related "2010 Luanda Compromise".¹²¹

Portuguese perspective

Most studies performed in Portugal have used statistical models to assess and predict the relationship and impact of various air contaminants, meteorological conditions and CRDs, and have mostly used data on hospital admissions of adults and children, as a possible effect of exposure to outdoor air pollution. Fewer analytical epidemiological studies were conducted to study the relationship between outdoor pollution and CRDs (mostly asthma) and they were mainly focused on urban children. Finally, there were a few studies focused on exposure to volcanic air pollution and its impact on lung diseases.

(a) Analytical epidemiological surveys

Various analytical epidemiological studies were carried out in Portugal to study the relationship between exposure to ambient air pollutants and epidemiological indices of respiratory diseases. These studies are summarized in Table 2. Most studies were carried out in urban settings (Lisbon, ^{77–79} Viseu, ^{80,81} Estarreja^{82,83} or Setúbal⁸⁴) and involved children. ^{77–81} These studies normally used validated questionnaires such as the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire, to analyse the presence of asthma and/or rhinitis in urban or rural schools. Most frequently studied ambient air pollutants were PM_{2.5}, PM₁₀, CO, NO₂, although other parameters were assessed in some of the reports, namely elements associated with resuspension or vehicle motors, ^{77–79} or BTEX – benzene, toluene, ethylbenzene and xylenes.^{80,81}

Most studies showed that pollutant concentrations were higher than advised by the World Health Organization and U. S. Environmental Protection Agency, but below the current European Union value, although in some areas, such as Lisbon, concentrations were even higher. However, most studies were cross-sectional and this is a main limitation which should be addressed in future projects.

Some representative studies carried out in urban or rural settings and on the relationship between volcanic activity and respiratory diseases will be analysed next.

In a 2006–2007 study, the ISAAC questionnaire was distributed to 806 children attending four primary schools in the small, low-industrial city of Viseu, to identify children who reported wheezing in the previous 12 months.^{80,81} Six hundred and forty-five questionnaires were returned, and 77 of the children reported wheezing in the previous 12 months. Of these, 54 were allowed to be included in the study and a total of 51 participants completed the protocol: record of clinical symptoms, pH analysis in exhaled breath condensate (EBC), measurement of exhaled nitric oxide fraction (FeNO), and spirometry, in four separate visits. Outdoor and indoor levels of air pollutants (O₃, NO, NO₂, CO, BTEX – benzene, toluene, ethylbenzene and xylenes, PM₁₀ and PM_{2,5}) were measured. Lung function parameters, as

Author and year of publication	Locality or region	Exposure	Population group	Health outcome	Type of study, year and analysis	Health outcome results
Urban studies on relat	ionship between exp	osure to air pollutants and i	respiratory outcomes			
Freitas et al, 2009 ⁷⁷ Freitas et al, 2009b ⁷⁸ Almeida et al, 2009 ⁷⁹	Lisbon	PM _{2.5} , PM ₁₀ , vari- ous elements asso- ciated with soil resuspension or vehicle motors, and water soluble ions	Children (5-10 years- old) attending pre-pri- mary and primary schools	Rhinitis, asthma / wheezing (ISAAC questionnaire definition)	Cross-sectional (2006- 2007); analysis using non-parametric Spear- man R test, and Princi- pal Component Analysis	There is a mixture of contributions of tested pollutants (namely $PM_{2.5}$ and its speciation for (i) chemical elements - Na, K, Sc, Cr, Fe, Co, Zn, As, Se, Br, Sb, Cs, La, Ce, Hg; (ii) the water-soluble cations Ca^{2+} , K^* , Mg^{2+} , Na^+ , NH_4^+ ; and (iii) water-soluble anions Cl^- , NO_3^- , SO_4^{2-} (which are soil resuspension- or vehicle motor-associated) to rhinitis in children, and this may vary according to season.
Borrego et al, 2007 ⁸⁰ Martins et al, 2012 ⁸¹	Viseu	Outdoor PM _{2.5} , PM ₁₀ , CO, O ₃ , NO, NO ₂ , BTEX (also indoor air pollutants)	Saud'Ar study (Wheez- ing children - ISAAC questionnaire defini- tion; also studied at city hospital)	Respiratory func- tional and inflam- matory outcomes (FEV ₁ , FEV ₁ /FVC, FEF25-75%, ΔFEV ₁ ; FeNO, pH of EBC); Clinical outcomes (wheezing, need of rescue medication; ER visits)	Prospective (4 study points in 2006-2007); analysis using meso- scale modelling sys- tem; adjusted Generalised estimating equation (GEE) two pollutant modelling with exchangeable working correlation; Spearman's rank correlation	Significant relationship between: a) PM_{10} and wheezing [-0,70 (-1.14 to -0.25; p = 0.002)]; (b) NO ₂ and wheezing [-2.08 (-3.59 to -0.58; p = 0.007)]. (b) toluene and need of rescue medication [0.21 (0.01 to 0.42; p = 0.041)], and ER visits [0.26 (0.06 to 0.46; p = 0.010)]; (c) ethylbenzene and need of rescue medication [0.45 (0.02 to 0.87; p = 0.039)]. (d) PM ₁₀ , NO ₂ , benzene, toluene, and ethylbenzene and various parameters of lung function; (e) PM ₁₀ , NO ₂ , benzene, and ethylbenzene on phEBC. No significant effects were seen on FeNO.
Neuparth et al, 2012 ⁸² Valente et al, 2014 ⁸³	Estarreja	Indoor and outdoor PM ₁₀ , NO ₂ smoking, dusty workplace	Adults - exposed work- ers of Estarreja chemi- cal complex (ECC) and general population controls from the same geographical area	Physician-diag- nosed asthma, and symptoms of chronic bronchitis; FEV ₁ /FVC (Neuparth,2012)	Case-control (2 periods in 2011 and 2012); analysis using a sec- ond-generation Gauss- ian model (URBAIR model); also an indi- vidual exposure model (DoseAR); also CHI- MERE exposure model	All individuals spent > 90% of their time indoors; there was high PM_{10} and NO_2 exposure variability. No significant differences in exposure were observed between the two studied groups. Analysis of the relationship between asthma or chronic bronchitis did not directly involve PM_{10} or NO_2 .
Farinha et al, 2021 ⁸⁴	Setúbal	PM ₁₀ , O ₃ , CO, SO ₂ , NO ₂ , measured at two stations	Asthma patients seen at an Allergy outpa- tient hospital clinic	Intensity of asthma symptoms (0-5 visual analogue scale) – Sum of the Scores of Asthma Symptoms (SSAS)	Longitudinal (March- April 2018); analysis using a temporal causal model – autoregres- sive time series model.	All pollutants influenced intensity of asthma symptoms. O ₃ level was the best predictive factor of symptom variability (particularly with a lag 5; $p < 0.05$), and PM ₁₀ (lag 4), CO (lag 5) and NO ₂ (lag 4) were secondary markers.
		sure to air pollutants and re				
Alvim-Ferraz et al, 1988 (2002 data) ⁸⁵ Sousa et al, 2009 (Phase 1) ⁸⁶ Sousa et al, 2011 (Phase 2) ⁸⁷	Torre de Mon- corvo, Moga- douro, and Espiunca	03	Children from local schools from two areas with high O ₃ exposure (Torre de Moncorvo and Mogadouro) and from an area with low O ₃ exposure (Espiunca)	Prevalence of asthma (Phase 1: ISAAC question- naire-based (data from Espiunca had been collected in 2002); Phase 2: spi- rometry-based	Cross-sectional (2007); analysis using univari- ate analysis as well as logistic regression models to calculate risks and odds ratios	Stage 1: Questionnaire-based: the lifetime prevalence of asthma (wheezing) was significantly higher in the areas with high O ₃ exposure (7.1%) than in those with low exposure (3.2%). Stage 2: Children living in the former areas had a 3-fold higher risk of having asthma than children living in the latter areas [RR = 2.84 (95% CI = $1.82 - 4.43$) and OR = 3.02 (95% CI = $1.88 - 4.86$].

Pulmonology 28	(2022) 376-3	95
----------------	--------------	----

Table 2 (Continued)	ned)					
Author and year of publication	Locality or region	Exposure	Population group	Health outcome	Type of study, year and analysis	Health outcome results
Relationship between e Amaral and Rodrigues, 2007 ⁸⁸	exposure to volcanic ac S. Jorge (Fur- nas) and Santa Maria, Azores islands	Relationship between exposure to volcanic activity and respiratory outcomes Amarat and S. Jorge (Fur- No parameters Citi Rodrigues, nas) and Santa were measured dre 2007 ⁸⁸ Maria, Azores (exposure to SO ₂ ter islands and H ₂ S was eac inferred) (hi out	comes Clinical records of chil- dren and adults regis- tered at each healthcare centre of each region: Furnas (high volcanic activity) and Santa Maria (with- out volcanic activity)	Incident chronic bronchitis stratifed by age groups	Restrospective (1991- 2001); analysis using relative risk estimates and Chi-square tests	The estimated age-standardised incidence rates for chronic bronchitis were higher in Furnas (224.8 for males and 196.7 for females) than in Santa Maria (56.3 for males and 18.3 for females), for both sexes. Living in Furnas was associated with significant risk ratios of chronic bronchitis in relation to living in Santa Maria [RR males=3.99 (95% CI = 2.98-5.35); RR females =10.74 (95% CI = 6.55 – 17.34], for both sexes.
Linhares et al, 2015 ⁸⁹	Ponta Delgada and Ribeira Quente, Azores islands	Soil CO ₂ flux	Children and adults liv- ing in Ribeira Quente (high volcanic activity as active fumarolic fields and degassing soils – hydrothermal area) and Ponta Del- gada (no volcanic activity)	Prevalence of COPD and restric- tive defects (ques- tionnaire-and spi- rometry-based)	Cross-sectional (2013); analysis using Mann- Whitney U test, Pear- son Chi-square test, adjusted binary logistic regression model; odds ratios adjusted for age, gender, tafigue, astma and smoking	 The hydrothermal area in comparison with the non-hydro-thermal are showed significant differences: (a) higher prevalence of restrictions (10.2% versus 3.0%; <i>P</i> = 0.001); (b) higher prevalence of COPD (33.6% versus 11.9%; p<0.001); (c) higher prevalence of more severe obstructions (mild, 15.7 versus 4.4, moderate, 6.8 versus 2.2, and severe, 4.7 versus 0, respectively). (d) higher OR for restrictive defects and COPD - 4.4 (95% CI 1.78–10.69) and 3.2 (95% CI 1.82–5.58), respectively.

well as wheezing symptoms, use of rescue medication (bronchodilators) and emergency department visits in the previous 6 months were used as clinical outcomes. A generalized estimating equation (GEE) approach with an exchangeable working correlation showed that exposure to PM_{10} , NO_2 , benzene, toluene and ethylbenzene was associated with a decrease in FEV₁ and an increase in Δ FEV₁, (change in FEV₁ 15 minutes after inhalation of 200 μ g of salbutamol) while increased exposure to NO₂ and benzene was also associated with a decrease of FEV₁/FVC and FEF_{25-75%}, the same was found with ethylbenzene for the latter. Acidity of EBC was associated with increased exposure to PM₁₀, NO₂, benzene and ethylbenzene. Ethylbenzene and toluene were the only pollutants with a significant positive association with FeNO and with symptoms in the previous months, respectively.

Another study performed in the city of Setúbal assessed the association between the intensity of asthma symptoms in adult patients seen at an outpatient clinic and the variation of PM_{10} , O_3 , NO_2 , SO_2 , and CO levels in the city.⁸⁴ Patients were instructed to record the intensity of their respiratory symptoms daily, in March and April 2018, and such symptom scores were added together to obtain a daily score. Daily levels of pollutants were obtained from the website of the Portuguese Environment Agency (APA). Data were analysed using a temporal causal model (autoregressive time series models based on the concept of Granger causality). Detected daily air pollutant levels were below internationally regulated values for background / trafficrelated components – 26.85 / 35.11 μ g/m³ for NO₂, 232.13 / 255.80 μ g/m³ for CO, and 21.63 / 19.73 μ g/m³ for PM₁₀indicating low level of air pollution. O₃ was significantly associated with asthma symptoms, particularly with a 5-day lag, whereas PM₁₀, CO and NO₂ also had a significant but less robust impact, with a 4-5 daylag.

Three related studies on rural pollution were performed in three places in northern Portugal, aiming to compare the prevalence of childhood asthma between two rural areas with high O₃ concentrations (Torre de Moncorvo and Mogadouro), and an area with low O₃ concentrations (Espiunca), and to determine potential risk.^{85–87} The presence of asthma was determined by self-report using the ISAAC questionnaire and a subgroup of children with positive questionnaires was further studied by spirometry. Logistic regression models were used to calculate odds ratios. Globally, this project showed that children living in the exposed areas had a 3-fold higher risk of having asthma than those living in the unexposed area, a difference which the authors attributed to O₃ pollution.

The association between chronic exposure to indirect volcanic (namely hydrothermal) activity and respiratory diseases was investigated in two studies carried out in the Azores islands.^{88,89} In one of the studies,⁸⁸ incidence rates of chronic bronchitis were much higher in the volcanically active (risk attributed to H₂S and SO₂, although no measurements of these gases were carried out) area for both sexes, especially in the younger groups. In addition, the risk of chronic bronchitis for the population of the active area was significant in relation to those living in inactive areas (males RR = 3.99; females RR = 10.74). In the other study,⁸⁹ the prevalence of restrictive and obstructive respiratory morbidities in the study group was significantly higher than in the reference group. Further, the prevalence of more severe

bronchial obstructions was higher in the study group. Multivariable analyses showed that exposure to volcanogenic pollution significantly predicted the presence of spirometric restrictive and obstructive patterns, and worsening of COPD.

Overall, epidemiological analytical studies carried out in Portugal have shown that chronic exposure to outdoor air pollution (namely $PM_{2.5}$, PM_{10} , O_3 , NO_2) may be associated with a higher prevalence of asthma, higher prevalence of symptoms and/or changes in respiratory function. Furthermore, this may occur even at low levels of pollution. Further studies are needed, particularly involving cohorts and with longitudinal monitoring data.

(b) Routine statistics studies

Most studies on the relationship between outdoor air pollution and respiratory diseases performed in Portugal have been based on statistical modelling of data collected from different databases. "All respiratory causes", asthma and/ or COPD were the most studied respiratory problems. In addition, parameters under study have included ER admissions due to disease exacerbations and these were analysed in relation to different time lags regarding increases in air pollutant levels.

There are twelve key studies in Portugal that examined the relationship between outdoor air pollutant levels and ER admissions for various respiratory causes. Most were carried out in large, industrial cities such as Lisbon (n=6) and Porto (n=2), and three were multicenter. These studies are summarized in Table 3.

Regarding outdoor air pollutants that were assessed and incorporated into analysis, PM_{10} (studied in isolation in 1 report), O_3 (analysed in isolation in 1 study), SO_2 and NO_2 were the most frequently studied, while NO was the least frequently assessed pollutant. Most studies analysed various pollutants (PM_{10} , SO_2 , NO_2 , CO, O_3), with data most frequently obtained from local stations belonging to APA and made available daily at the QualAR online database (https://qualar.apambiente.pt/). Various meteorological factors (e.g., temperature, rain, humidity, wind) included either as main environmental determinants or as covariates in analytical models of outdoor air pollutants have also been analysed.

ER admissions or hospitalizations, as well as mortality due to exacerbations of asthma, "all respiratory causes", and COPD were the most frequently studied respiratory outcomes. Of these, asthma was the most commonly studied (single focus in two studies), and COPD the least frequently studied, with asthma, COPD and "all respiratory causes" being simultaneously analysed only in three studies. Most hospital admission data were obtained from the Central Administration of the Health Service (ACSS), with mortality data being retrieved from the National Institute of Statistics. Patient records mostly included adults and children, with two studies focused only on children.^{93,94}

The methods used in analysing the association between exposure to air pollutants and clinical outcomes varied significantly across studies but most frequently involved various statistical models such as General Additive Poisson Regression Models (GAM-type), Quasi-Poisson GAM combined with distributed lag non-linear model (DLNM), Ordinary Least Squares Linear Regression, and Cross-correlation method models. Two studies from the same group used Principal Component Analysis.^{97,98} Most models adjusted the effects of pollutants by incorporating meteorological and other factors (e.g., seasonality, age ranges, etc).

Globally, results have shown that $PM_{10}^{91-97,99,100}$ and SO2^{90-92,97,99,100} were most frequently positively associated with respiratory disease-related outcomes (however, PM₁₀ levels were inversely correlated with hospital admissions for COPD, in one study⁹⁹). With a slightly lower frequency, 92,93,96,97,101 CO, 90, 92, 95, 97, 98, 100 $PM_{2.5}$, $PM_{2.5}$, $PX_{2.95,97,100}$, $PM_{2.5}$, $PX_{2.95,97,100,102}$, $PX_{2.95,97,100,102}$ and $PX_{2.95,97,100,102}$ have also been shown to be positively correlated with respiratory disease outcomes. O₃ was a special situation since it showed positive correlations with respiratory outcomes in four studies: with all respiratory causes, asthma, and COPD,⁹¹ acute upper respiratory infections (AURI) and chronic lower respiratory diseases (CLRD),⁹⁵ and COPD and "allied conditions", 98 and respiratory mortality in those > 65 years-old, as well as ER visits in those < 14years-old and those > 65 years-old¹⁰⁰; however, in contrast, it showed negative correlations in two studies: with asthma⁹⁷ and with all respiratory causes.¹⁰¹

The concern about forest fires is growing as not only do they impact on respiratory health, the incidence is on the rise due to climate change. One study examined the ambient levels of PM₁₀ and PM_{2.5} associated with large fires in 2017 in the centre region of Portugal and the incidence of asthma symptoms in asthmatic children.¹⁰³ Data were collected daily at five local rural monitoring stations belonging to the APA network. The PM₁₀ and PM_{2.5} concentrations increased during the fires, with daily concentrations exceeding the European and Portuguese guidelines for various days in 2017 (up to 704 μ g/m³ for PM₁₀ and 46 μ g/m³ for PM_{2.5}, respectively). An estimated incidence of 3524 episodes of asthma symptoms per 100,000 individuals at risk was attributable to exposure to these fires. This study quantified the effect of forest fires on the incidence of asthma symptoms in children living at affected areas and suggested that rural stations should measure pollutants associated with respiratory health.

Pollution reduction benefits

Reducing air pollution may have various respiratory health benefits.¹²² Some studies used an Impact Pathway Approach to estimate the potential health impacts and benefits (or avoided external costs) from improvements in air quality in Portugal.^{104,105} Various emission reduction scenarios, based on individual and combined abatement measures (e.g., replacing 10% of light vehicles below Euro 3 with hybrid vehicles, or implementing reduction technologies for PM₁₀ from industrial combustion and production processes), were tested for the main activity sectors (traffic, residential and industrial combustion and production processes) of a Portuguese urban area (Porto Metropolitan Area). Implementation of all measures would result in a significant reduction in PM₁₀ and SO₂ emissions, thereby improving air quality and contributing to saving almost 9 million \notin /year, an amount which includes direct costs (health care and non-health care costs associated with treatment and caring) and indirect costs

Study	Study area	Exposure	Population group	Health outcome	Type of study, year and analysis	Health outcome results
Relationshin I	netween exposure to	outdoor air pollutant	s and admissions to hospitals for acu	e respiratory diseases		
Alves et al, 2010 ⁹⁰	Lisbon	PM ₁₀ , SO ₂ , CO, O ₃ , NO, NO ₂	Clinical records of patients for deal (children and adults; age groups 0-14, 15-64, > 64 years old) admitted to 12 hospitals because of all respiratory causes, asthma, and COPD; also cardiovascular causes (data from IGIF)	Daily counts of hospital admissions due to all respi- ratory causes, asthma, and COPD (also cardiocircula- tory causes)	Time-series (1999-2004); anal- ysis using General Additive Poisson Regression Models (GAM-type) with linear and quadratic tendency terms to control for confounding tem- perature, humidity and sea- sonal effects; 1, 2 and 3-day lags	Significant association (1-day lagged) between levels of SO ₂ and increased childhood ER admissions for all respiratory causes, with an increased risk (RR = 1.139) for an increase of 10 μ g/m ³ of SO ₂ daily concentra- tions. CO was also significantly associated, with a 2- day lag, with ER admissions for all respiratory causes in patients > 64 years-old
Freitas et al, 2010 ⁹¹	Lisbon	PM ₁₀ , SO ₂ , CO, O ₃ , NO, NO ₂ , temperature, humidity	Clinical records of patients (children and adults; age groups 0-14, 15-64, > 64 years old) admitted to 12 hospitals due to respiratory causes; also cardiovascular causes (data from IGIF)	Daily counts of hospital admissions due to all respi- ratory causes, asthma and COPD (also cardiocircula- tory causes)	Time-series (1999-2004); anal- ysis using t tests, F tests, parametric (Pearson) correla- tions, with a time lag of zero	Multiple, significant, correlations between tempera- ture, humidity, PM_{10} , SO_2 , O_3 and NO_2 and hospital admissions for all respiratory diseases, asthma and COPD.
Cruz et al, 2015 ⁹²	Lisbon	PM _{2.5} , PM ₁₀ , SO ₂ , CO, O ₃ , NO, NO ₂	Clinical records of patients (children and adults; age groups 0-14, 15-64, > 64 years old) admitted to 13 hospitals due to respiratory causes; also cardiovascular causes (data from ACSS)	Daily counts of hospital admissions due to all respi- ratory causes, and asthma (and due to all circulatory and various cardiovascular diseases)	Time series (2006-2008); anal- ysis using Ordinary Least Squares Linear Regression	Significant positive associations between: (a) CO, NO, NO ₂ , SO ₂ , PM ₁₀ and PM _{2.5} and respiratory diseases for ages 0-14 years (up to 1.9 % hospital admissions increase with 10 μ g/m ³ pollutant increase); and (b) NO, NO ₂ and SO ₂ and respiratory diseases for ages above 64 years (1.3% hospital admissions increase with 10 μ g/m ³ CO increase).
Moreira et al, 2008 ⁹³	Lisbon	PM _{2.5} , PM ₁₀	Children (0-14 years-old) admitted to a hospital ER as well as being seen at outpa- tient clinic, due to respiratory conditions (direct data from the hospital)	Daily counts of hospital admissions due to respira- tory causes: acute infec- tion, chronic infection, rhinits, influenza, pneumo- nia, chronic bronchitis, emphysema, COPD, asthma, bronchiectasis and other	Time series; (January-Decem- ber 2004); analysis using mod- els of multiple linear regression; 3- and 5-day lags	Significant association between the zone where chil- dren with respiratory problems were seen at a health- care unit and the city areas with the highest PM levels
Rodrigues et al, 2021 ⁹⁴	Lisbon	PM ₁₀ , tempera- ture, relative humidity	Records of children (age groups: 0-4, 5-9 and 10- 14 years, and disaggregated by sex) admitted to Hospitals of the Lisbon Metropolitan area, due to asthma (data from ACSS)	Daily counts of hospital admissions due to asthma	Time series (2009-2015); anal- ysis using a Quasi_Poisson gen- eralized additive model combined with a distributed lag non-linear model (DLNM); different lags (up to 3 month- lag)	An increased risk of asthma-related hospital admissions was observed with PM_{10} with a 2% (RR = 1.02; CI 95% 1.01–1.03) in the general sample, and in male children; also in age group 5-9 years, with an increased risk at lag 0 of RR =1.03; 95% CI (1.01–1.05) Temperature and relative humidity also had significan effects.
Franco et al, 2020 ⁹⁵	Lisbon Metro- politan área (Lisbon, Odive- las, Amadora)	PM ₁₀ , NO ₂ , NO, CO, O ₃	Records of patients (children and adults; age groups 0-14, 15-64, > 64 years old) admit- ted to Hospitals, due to respi- ratory and circulatory causes (data fromACSS)	Number of daily hospital admissions due to all repis- ratory diseases (ARD), chronic lower respiratory diseases (CLRD), or acute upper respiratory infec- tions (AURI)	Time series (January-Decem- ber 2015); analysis using vari- ous models and time lags Ordinary Least Squares linear regression; best models selected by statistical significance	Association was seen between air pollution and AURI (2.93% increased ER admissions per 10μ g/m ³ increase in air pollution); significant between ARD and air pollution (2.2% increased ER admissions per 10μ g/m ³ increase in air pollution). CO was the pollutant most frequently associated with ER admissions due to ARD, AURI and CLRD. O ₃ also showed a substantial association in the older age groups, increasing ER admissions due to AURI and CLRI (4.1% and 4.8% per 10μ g/m ³ increase in O ₃ levels, respectively).

Table 3	(Continued)					
Study	Study area	Exposure	Population group	Health outcome	Type of study, year and analysis	Health outcome results
						NO ₂ had the largest average effect on ER admissions across all models and age groups (4.4% increase in ER admissions per $10\mu g/m^3$ increase in NO ₂), with the strongest associations being with CLRD and AURI. NO and PM ₁₀ had the fewest associations with ER admissions but PM ₁₀ still had a significant impact on respiratory diseases (4.52% increase in ER admissions per $10\mu g/m^3$ increase in PM ₁₀ levels).
Almeida et al, 2014 ⁹⁶	Setúbal	PM _{2.5} , PM ₁₀ , O ₃	Records of patients (children and adults; age groups 0-14, 15-64, > 64 years old) admit- ted to Setúbal Central Hospital because of circulatory and respiratory causes (data from ACSS)	Daily counts of hospital admissions due to all respi- ratory causes, and asthma (and circulatory and vari- ous cardiovascular diseases and cerebrovascular disease),	Time series (January-Decem- ber 2009); analysis using vari- ous models (DAY, WEEK, O&MA, MA&MA) of Ordinary Least Squares Linear Regression	An increase of 10 μ g/m ³ in PM ₁₀ was associated with a rise of 1.6% in hospital admissions for respiratory causes in individuals < 14 years; an increase of 10 μ g/m ³ in PM ₁₀ was associated with a rise of 0.8 - 0.9% in hospital admissions for respiratory causes in individuals > 64 years; an increase of 10 μ g/m ³ in PM _{2.5} was associated with a rise of 0.8-1.1% in hospital admissions for respiratory diseases in individuals > 64 years.
Azevedo et al, 2011 (data from 2005) ⁹⁷	Porto	PM ₁₀ , SO ₂ , CO, O ₃ (collected at 11 stations); PM _{2.5} (col- lected only at 1 station)	Records of patients (no infor- mation on age ranges) admit- ted to 4 major Hospitals due to asthma / bronchitis (direct data from the hospitals)	Number of daily hospital admissions due to asthma /, bronchitis	Time series (June-August 2005); analysis using Principal Component Analysis (PCA) and Pearson correlation coeffi- cient; adjustemnt for temper- ature and wind; 1- and 2-day lags	Pearson correlation showed that: (a) for 1-day lag: only CO and NO had significant, posi- tive correlations with asthma / bronchitis: for CO (Pearson=0.209; $p = 0.024$); for NO (Pearson=0.234; $p = 0.024$); O_3 had a significant, negative correlation (Pearson= -0.233; $p = 0.024$); (b) for 2-day lag; O_3 was also negatively correlated with asthma / bronchitis (Pearson= -0.213; $p = 0.041$); PM _{2.5} and CO had a significant, positive correlation: for PM _{2.5} (Pearson=0.241; $p = 0.02$), for CO (Pear- son=0.219; $p = 0.035$). PCA also showed negative asso- ciation between O_3 and asthma / bronchitis, and positive associations between PM ₁₀ , PM _{2.5} , NO and CO and asthma / bronchitis (in the Winter), and between SO ₂ and NO ₂ and asthma / bronchitis (in the Summer).
Azevedo et al, 2011 ⁹⁸	Porto	O ₃	Records of patients (no infor- mation on age ranges) admit- ted to 3 major Hospitals due to various circulatory or respira- tory causes (direct data from the hospitals)	Number of daily hospital admissions due to COPD, bronchitis, asthma, pneu- moconioses and other lung diseaes due to external agents; also due to various cardiocirculatory causes	Time series (June-August 2005); analysis using Principal Component Analysis (PCA) and ANOVA; 0- to 4-day lags	PCA analysis did not show an association between O_3 concentrations (studied with a 4-day lag) and hospital admissions due to respiratory causes. In specific periods results showed that increased incidence of admissions due to COPD and "allied conditions" (including bronchitis and asthma) was associated with exposure to O_3 , NO and CO.
Alves et al, 2005 ⁹⁹	Porto	PM ₁₀ , SO ₂ , assessed at 3 different pla- ces in the city, with varying influences of industry and traffic	Records of patients (children and adults) admitted to Gaia Hospital, due to COPD exacer- bations (direct data from the hospital)	Number of daily emer- gency admissions (ER) due to COPD	Time series (1 January 31 December), analysis using cross-correlation method mod- els; up to 12-day lags	Positive relation between SO ₂ and ER admissions was found using some models, with stronger association for lag 0 than with 1- or 2-day lags. A negative relation between PM ₁₀ and ER admissions, with stronger association for 1- or 2-day lags.
Nicolau et al, 2010 ¹⁰⁰	Matosinhos, Maia, Valongo and Lisbon (GeoFASES	PM ₁₀ , CO, O ₃ , NO ₂ , SO ₂	Records of patients admitted to Hospitals due to all causes, respiratory causes and circula- tory causes (data ACSS);	Daily mortality counts (2000-2004) and ER visits (2000-2007) due to respira- tory causes	Time series (2000-2004); anal- ysis using Poisson regressions developed from Generalized Additive Models (final model	Only O ₃ showed an increased risk (RR = 1.071 for each $10 \ \mu g/m^3$ increase in O ₃) of respiratory mortality and only in people ≥ 65 years old. PM ₁₀ , NO ₂ , SO ₂ and CO showed a significantly

A.C. Sousa, M.R. Pastorinho, M.R. Masjedi et al.

Study	Study area	Exposure	Population group	Health outcome	Type of study, year and analysis	Health outcome results
	multicentre project)		mortality data obtained from the National Institute of Statis- tics; data from total sample of patients and also stratified into \leq 14 years old and \geq 65 years old		used only single pollutants) and Pearson correlation; 0- to 8-day lags	increased risk of ER visits (RR between 1.001 and 1.089), with different lags and mostly in the total sam ple, in \leq 14 yrs old and in \geq 65 yrs old).
Martins et al, 2021 ¹⁰¹	58 monitoring stations in mainland Por- tugal (data on QualAr web- site)	PM _{2.5} , PM ₁₀ , NO ₂ , CO, O ₃ , SO ₂	Records of patients (children and adults) admitted to Hospi- tals due to respiratory causes (data from ACSS)	Daily hospital admissions due to respiratory causes	Multicentre time series (2005- 2017); statistical modelling analysis using the INGARCH approach incorporating rele- vant covariates; cluster analy- sis; 1- to 7-day lags	PM and NO covariates had, in general, positive coeffi- cients indicating that an increase in their concentra- tions is associated with an increase in hospital admissions. In contrast, lower levels of O ₃ were assoc ated with increased hospital admissions.
Ayres-Sam- paio et al, 2014 ¹⁰²	Various loca- tions in Portu- gal (stratified into % urban coverage: low, moderate, high)	PM ₁₀ , NO ₂ , temperature, relative humid- ity, Normalized Difference Veg- etation Index (NDVI)	Records of patients (no infor- mation is given on age ranges) admitted to Hospital, due to asthma exacerbations (data fromACSS)	Number of daily hospital admissions due to asthma; asthma admission rates / 1000 inhabitants in each municipality	Multicentre time series (2003- 2008); analysis using linear regression analysis	In the most urban group, high temperatures, low NDV and high NO_2 levels had consistent relationships with asthma in all seasons (Pearson correlation coefficients ranging from 0.351 - 0.600; 0.376 - 0.498; and 0.405 - 0.513, respectively). No significant effect was seen with PM ₁₀ .
Relationship b Oliveira et al, 2020 ¹⁰³	• /	· · ·	tdoor air pollutants and admissions t Children living in rural area	o hospitals due to asthma Estimation of incident asthma symptoms in chil- dren / 100,000 individuals at risk	Statistical modelling using data from 2017 forest fires; analysis using WHO AIRQ+ model application	PM ₁₀ and PM _{2.5} levels were increased during large fires, with daily concentrations exceeding the European/national guidelines in various periods of 2017 (up to 704 μ g/m ³ for PM ₁₀ and 46 μ g/m ³ for PM _{2.5}), respectively. Potential incidence of 3524 cases of asthma symptoms / 100,000 children at risk, during such periods. For PM ₁₀ , RR (median; 95% CI)= 1.03 (1.01-1.05), with attributable proportion of cases varying between 1.99 and 3.62%, depending on locality.
tudies addre	essing health benefits	of outdoor air polluti	on reduction			locality.
Silveira et al, 2016 ¹⁰⁴	Porto	PM ₁₀ (MAPLIA project)	Children and adults	Parameters used to calcu- late benefits: asthma in children, chronic bronchi- tis in children and adults, and related relative risk, baseline annual rate and health costs	Impact pathway approach involving 4 abatement meas- ures; analysis using 7 abate- ment scenarios; health impacts analysed using Equa- tion (MAPLIA system)	Implementation of all measures would result in a reduction in PM_{10} emissions by almost 8%, improving air quality by about 1% and contributing to a benefit 6 8.8 million ϵ /year for the entire study domain, due t reduction of health-related costs.
Airanda et al, 2016 ¹⁰⁵	Porto	PM ₁₀ , NO _x (MAPLIA project)	Children and adults	Some parameters used to calculate benefits: (a) PM ₁₀ : short-term (asthma in 5-9 yr-old chil- dren; respiratory hospital admissions, all ages); long- term (incidence chronic bronchitis children and adults); (b) NO ₂ : short- term (respiratory hospital admissions, all ages);	Impact pathway approach involving 4 abatement meas- ures; analysis using 15 scenar- ios; health impacts analysed using MAPLIA system; compari- son of implementation costs and avoided external costs (based on health benefits)	Implementation of all measures would result in a reduction of 4.5% at most for PM_{10} and NO_2 concentrations. This corresponds to reductions of up to 2.8 μg , m ³ for PM_{10} and up to 1.2 $\mu g/m^3$ for NO_2 , improving a quality and contributing to a benefit of 8.9 million ϵ /year for the entire study domain, due to reduction of health-related costs.

Pulmonology 28 (2022) 376-395

(associated with loss of productivity due to morbidity as well as loss of production due to morbidity or mortality) as well as intangible costs (non-market costs associated with pain and suffering).¹⁰⁴

Discussion

Perspective from some GARD countries

Although there is evidence showing the negative effects of air pollution on the respiratory system, ^{123,124} such evidence is limited in various GARD countries, due to the lack of epidemiological studies. Nevertheless, current information shows that the level of exposure to pollutants in some GARD countries is higher than the current level in industrial regions from high-income countries and has exceeded the standards recommended by the WHO. China and India have the highest concentration of air pollutants, ^{123,125} and in other countries, air pollution does not seem to have reached such high levels.

Given the many gaps in our knowledge about the dominant ambient air pollution in some GARD countries, we have a limited knowledge about the real impact of such pollution on respiratory diseases and mortality of the population in these countries. However, if one assumes that poverty increases the vulnerability resulting from ambient air pollution (and vice versa), then air pollution should be specifically damaging for the poorest GARD countries.

Furthermore, the methods of assessment of results with regard to air pollution exposure in some GARD countries are very discrepant, and studies are generally cross-sectional and therefore have a weaker standard compared to methods adopted by others. Exposures data were often measured by questionnaires without representative individual measurements nor analysed using GIS-based models. Therefore, with these design limitations, the current general evidence generated was not robust enough to estimate the real impact of ambient air pollution on respiratory health in the populations in these GARD countries. Unfortunately, currently there was a lack of studies with reliable statistics on mortality at regional or national scales in some GARD countries.

The WHO estimate of $91\%^{21}$ of the world's population living in places where air quality levels exceed the WHO guideline limits, is concerning. This calls for urgent need for building public understanding of associations of air pollution and health. Thus, the following recommendations are proposed for a better and more precise assessment of the impact of air pollution on the respiratory health of populations in some GARD countries:

- In order to assess a sound relationship between air pollution and respiratory diseases or respiratory disabilities in locations where research is carried out, 5–10-year studies should be designed and performed with large samples;
- (2) More than one year of follow-up is required to estimate the incidence of disease based on pulmonary function testings;
- (3) The time-points of such studies and the number of

participants should be large enough to ensure the ability to study effects of heterogeneous environmental conditions and health backgrounds;

- (4) There is a need to improve study quality and respiratory health of individuals living in the studied sites: it implies socio political support and allocating more budget and specialists for conducting wide cohort studies, especially in countries where air pollution and respiratory dysfunction are more severe. Such studies will have essential social advantages in terms of protecting public health.
- (5) Further attempts are needed to promote efficiency of preventive measures and empowerment of citizens in some GARD countries.

Portuguese perspective

Although air pollution levels are not among the highest in Europe, the most urbanized cities in Portugal, namely Lisbon and Porto, have significant elevations in the main pollutants. Exposure to these pollutants is associated with a higher risk of respiratory disease. Furthermore, with climate change, the effects of air pollution are likely to worsen. Since air pollution exerts a substantial health and economic strain on societies, it is imperative that a broad and integrated approach is implemented, targetting reducing emissions of air pollutants, as well as reducing exposure by other means. Thus, policy makers should consider reducing air pollutants in order to achieve better air quality management and reduce pollution-worsened respiratory diseases such as asthma and COPD. The implementation of the National Emission Ceilings Directive is important, since it requires the definition of emission reduction measures in an Air Pollution Control Program. The FUTURAR¹²⁶ research project has addressed this topic, following an integrated assessment modelling approach, to estimate health impacts, costs and benefits associated with air quality in the future, ^{127,128} and one of its conclusions is that the expected reduction of PM₁₀ and NO₂ levels in the future will reduce the number of premature deaths.

Conclusions

Worldwide, ambient air pollution increasingly adversely impacts respiratory health at all ages, and has amounted to substantial high economic and societal costs. This situation may be further compounded by climate change. It is paramount to establish strong research teams to conduct further interdisciplinary studies on air pollution and health effects (such as effects on the respiratory system health).

An integrated approach must involve governments (in Portugal, namely the National Programme against Respiratory Diseases (PNDR), of the Directorate General of Health, Portuguese Ministry of Health, which hosts GARD-Portugal, but also other governmental institutions), academia, health professionals and health institutions, scientific societies, patient associations and the community at large. Such an approach not only will garner a robust commitment, establish strong advocacy and clear objectives, and raise greater awareness, it will also support a strategy with adequate measures to be implemented to achieve better air quality and reduce the burden of CRDs.

Conflict of interest

None

References

- 1. WHO (World Health Organization), Health topics: Chronic respiratory diseases. Available at: https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1 [accessed 22 May 2021].
- Forum of International Respiratory Societies. The global impact of respiratory disease. 3rd ed. European Respiratory Society; 2021 https://www.firsnet.org/images/publications/ FIRS_Master_09202021.pdf [accessed 22 September 2021].
- Labaki WW, Han MLK. Chronic respiratory diseases: a global view. Lancet. 2020;8:531–3. https://doi.org/10.1016/S2213-2600(20)30157-0.
- GBD 2017: a fragile world. Lancet. 2018;392:1683. https:// doi.org/10.1016/S0140-6736(18)32858-7.
- Viegi G, Maio S, Fasola S, Baldacci S. Global burden of chronic respiratory diseases. J Aerosol Med Pulm Drug Deliv. 2020;33:171–7. https://doi.org/10.1089/jamp.2019.1576.
- Soriano JB, Kendrick PJ, Paulson KR, Gupta V, Abrams EM, Adedoyin RA, et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Respir Med. 2020;8:585–96. https://doi.org/10.1016/S2213-2600 (20)30105-3.
- 7. FIRS. The global impact of respiratory disease. 2nd edn. Sheffield: European Respiratory Society. https://www.who. int/gard/publications/The_Global_Impact_of_Respiratory_Disease.pdf [accessed 22 May 2020].
- Bousquet J, Dahl R, Khaltaev N. Global alliance against chronic respiratory diseases. Eur Respir J. 2007;29:233–9. https:// doi.org/10.1183/09031936.00138606.
- WHO (World Health Organization), Global Alliance against Chronic Respiratory Disease—About GARD. Available at: https://www.who.int/gard/en/ [accessed May 22, 2021].
- Meghji J, Mortimer K, Agusti A, Allwood BW, Asher I, Bateman ED, et al. Improving lung health in low-income and middle-income countries: from challenges to solutions. Lancet. 2021;397:928–40. https://doi.org/10.1016/S0140-6736(21) 00458-X.
- Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J. 2017;49:1600419. https://doi.org/ 10.1183/13993003.00419-2016.
- Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies' environmental committee, part 1: the damaging effects of air pollution. Chest. 2019;155:409–16. https://doi.org/ 10.1016/j.chest.2018.10.042.
- Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies' environmental committee, part 2: air pollution and organ systems. Chest. 2019;155:417–26. https://doi.org/ 10.1016/j.chest.2018.10.041.
- Viegi G, Baldacci S, Maio S, Fasola S, Annesi-Maesano I, Pistelli F, et al. Health effects of air pollution: a southern European perspective. Chin Med J. 2020;133:1568–74. https://doi.org/10.1097/CM9.00000000000869. (Engl).
- 15. Dominski FH, Branco JHL, Buonano G, Stabile L, da Silva MG, Andrade A. Effects of air pollution on health: a

mapping review of systematic reviews and meta-analyses. Environ Res. 2021;201:111487. https://doi.org/10.1016/j. envres.2021.111487.

- Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet. 2017;389:1907–18. https://doi.org/10.1016/S0140-6736(17) 30505-6.
- De S, Kushwah GDS, Dharwey D, Shanmugasundaram D. Respiratory morbidity of roadside shopkeepers exposed to traffic-related air pollution in Bhopal, India. J Health Pollut. 2019;9:190305. https://doi.org/10.5696/2156-9614-9.21.190305.
- Sylla FK, Faye A, Fall M, Anta TD. Air pollution related to traffic and chronic respiratory diseases (asthma and COPD) in Africa. Health. 2017;9:1378–89. https://doi.org/10.4236/ health.2017.910101.
- Rivera NYR, Tamayo-Ortiz M, García AM, Just AC, Kloog I, Téllez-Rojo MM, et al. Prenatal and early life exposure to particulate matter, environmental tobacco smoke and respiratory symptoms in Mexican children. Environ Res. 2021;192:110365. https://doi.org/10.1016/j.envres.2020.110365.
- Sugiyama T, Ueda K, Seposo XT, Nakashima A, Kinoshita M, Matsumoto H, et al. Health effects of PM2.5 sources on children's allergic and respiratory symptoms in Fukuoka, Japan. Sci Total Environ. 2020;709:136023. https://doi.org/10.1016/j.scitotenv.2019.136023.
- WHO (World Health Organization). Ambient air pollution: a global assessment of exposure and burden of disease. 2016. Available at: https://apps.who.int/iris/handle/10665/ 250141. [accessed 20 May 2021].
- 22. Saleh S, Shepherd W, Jewell C, Lam N, Balmes J, Bates M, et al. Air pollution interventions and respiratory health: a systematic review. Int J Tuberc Lung Dis. 2020;24:150–64. https://doi.org/10.5588/ijtld.19.0417.
- To T, Feldman L, Simatovic J, Gershon AS, Dell S, Su J, et al. Health risk of air pollution on people living with major chronic diseases: a Canadian population-based study. BMJ Open. 2015;5:e009075. https://doi.org/10.1136/bmjopen-2015-009075.
- Hamatui N, Beynon C. Particulate matter and respiratory symptoms among adults living in Windhoek, Namibia: a cross sectional descriptive study. Int J Environ Res Public Health. 2017;14:110. https://doi.org/10.3390/ijerph14020110.
- 25. To T, Zhu J, Larsen K, Simatovic J, Feldman L, Ryckman K, et al. Progression from asthma to chronic obstructive pulmonary disease. Is air pollution a risk factor? Am J Respir Crit Care Med. 2016;194:429–38. https://doi.org/10.1164/ rccm.201510-1932OC.
- 26. Lanzinger S, Rosenbauer J, Sugiri D, Schikowski T, Treiber B, Klee D, et al. Impact of long-term air pollution exposure on metabolic control in children and adolescents with type 1 diabetes: results from the DPV registry. Diabetologia. 2018;61:1354–61. https://doi.org/10.1007/s00125-018-4580-8.
- 27. Lim SS, Vos T, Flaxman AD, Danael G, Shibuya K, Amann M, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2224–60. https://doi.org/10.1016/S0140-6736(12)61766-8.
- Forouzanfar MH, Afshin A, Alexander LT, Anderson HB, Brutta ZA, Birykov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1659–724. https://doi.org/10.1016/S0140-6736(16)31679-8.

- Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M. Global burden of disease collaborative network. global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–71. https://doi.org/10.1016/S0140-6736(14) 61682-2.
- 30. Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2.
- Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The lancet commission on pollution and health. Lancet. 2018;391:462-512. https://doi.org/10.1016/S0140-6736(17) 32345-0.
- Schraufnagel DE, Balmes JR, De Matteis S, Hoffman B, Kim WJ, Perez-Padilla R, et al. Health benefits of air pollution reduction. Ann Am Thorac Soc. 2019;16:1478–87. https://doi.org/ 10.1513/AnnalsATS.201907-538CME.
- Akerlof KL, Delamater PL, Boules CR, Upperman CR, Mitchell CS. Vulnerable populations perceive their health as at risk from climate change. Int J Environ Res Public Health. 2015;12:15419–33. https://doi.org/10.3390/ ijerph121214994.
- 34. Katoto PD, Byamungu L, Brand AS, Mokaya J, Strijdom H, Goswami N, et al. Ambient air pollution and health in Sub-Saharan Africa: current evidence, perspectives and a call to action. Environ Res. 2019;173:174–88. https://doi.org/10.1016/j.envres.2019.03.029.
- Torres P, Ferreira J, Monteiro A, Costa S, Pereira MC, Madureira J, et al. Air pollution: a public health approach for Portugal. Sci Total Environ. 2018;643:1041–53. https://doi.org/ 10.1016/j.scitotenv.2018.06.281.
- 36. APA. Portuguese informative inventory report 1990–2015 submitted under the NEC directive (EU) 2016/2284 and the unece convention on long-range. Transboundary air pollution. Portuguese Environmental Agency; 2017. (March, 15th). Available at: https://apambiente.pt/sites/default/files/_Clima/Inventarios/IIRChapter10%28GriddedData%26LPS%29.pdf [accessed 20 May 2021].
- Namvar Z, Yunesian M, Shamsipour M, Hassanvand MS, Naddafi K, Shahhosseini E. Cross-sectional associations between ambient air pollution and respiratory signs and symptoms among young children in Tehran. Atmosph Environ. 2020;223:117268. https://doi.org/10.1016/j.atmosenv.2020.117268.
- Masjedi MR, Jamaati HR, Dokouhaki P, Ahmadzadeh Z, Taheri SA, Bigdeli M, et al. The effects of air pollution on acute respiratory conditions. Respirology. 2003;8:213–30. https://doi. org/10.1046/j.1440-1843.2003.00455.x.
- **39.** Khalilzadeh S, Khalilzadeh Z, Emami H, Masjedi MR. The relation between air pollution and cardiorespiratory admissions in Tehran. TANAFFOS. 2009;8:35–40.
- Raji H, Riahi A, Borsi SH, Masoumi K, Khanjani N, AhmadiAngali K, et al. Acute effects of air pollution on hospital admissions for asthma, COPD, and bronchiectasis in Ahvaz, Iran. Int J Chron Obstruct Pulmon Dis. 2020;15:501–14. https://doi.org/ 10.2147/COPD.5231317.
- Masoumi K, Shoushtari MH, Forouzan A, Darian AA, Dastoorpoor M, Ebrahimzadeh P, et al. Rainfall-associated bronchospasm epidemics: the epidemiological effects of air pollutants and weather variables. Can Respir J. 2017;2017:9252069. https://doi.org/10.1155/2017/9252069.
- 42. Geravandi S, Sicard P, Khaniabadi YO, De Marco A, Ghomeishi A, Goudarzi G, et al. A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran. Environ Sci Pollut Res Int. 2017;24:18152–9. https://doi.org/10.1007/s11356-017-9270-4.

- Shakerkhatibi M, Benis KZ, Asghari-Jafarabadi M, Sadeghi-Bazarghani H, Allahverdipour H, Oskouei DS, et al. Air pollution-related asthma profiles among children/adolescents: a multi-group latent class analysis. Ecotoxicol Environ Saf. 2021;219:112344. https://doi.org/10.1016/j. ecoenv.2021.112344.
- 44. Shakerkhatibi M, Seifipour H, Sabeti Z, Kahe D, Jafarabadi MA, Benis KZ, Hajaghazadeh M. Correlation of ambient particulate matters (PM₁₀, PM_{2.5}) with respiratory hospital admissions: a case-crossover study in Urmia, Iran. Hum Ecol Risk Assess Int J. 2021;27:2184–201. https://doi.org/ 10.1080/10807039.2021.1964064.
- 45. Rashidi M, Ramesht MH, Zohary M, Poursafa P, Kelishadi R, Rashidi Z, et al. Relation of air pollution with epidemiology of respiratory diseases in Isfahan, Iran from 2005 to 2009. J Res Med Sci. 2013;18:1074–9. PMID: 24523799.
- Razavi-Termeh SV, Sadeghi-Niaraki A, Choi S-M. Asthma-prone areas modeling using a machine learning model. Sci Rep. 2021;11:1912. https://doi.org/10.1038/s41598-021-81147-1.
- Razavi-Termeh SV, Sadeghi-Niaraki A, Choi S-M. Effects of air pollution in Spatio-temporal modeling of asthma-prone areas using a machine learning model. Environ Res. 2021;200:111344. https://doi.org/10.1016/j.envres.2021.111344.
- **48.** Yazdanparast T, Salehpour S, Masjedi MR, Azin SA, Seyedmehdi SM, Boyes E, et al. Air pollution: the knowledge and ideas of students in Tehran-Iran, and a comparison with other countries. Acta Med Iran. 2013;51:487–93.
- 49. To T, Zhu J, Stieb D, Gray N, Fong I, Pinault L, et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J. 2020;55:1900913. https://doi.org/10.1183/13993003.00913-2019.
- 50. Shin S, Bai L, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, et al. Air pollution as a risk factor for incident chronic obstructive pulmonary disease and asthma. A 15-year population-based cohort study. Am J Respir Crit Care Med. 2021;203:1138–48. https://doi.org/10.1164/rccm.201909-1744OC.
- Weichenthal S, Bai L, Hatzopoulou M, Van Ryswyk K, Kwong JC, Jerrett M, et al. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: a cohort study. Environ Health. 2017;16:64. https://doi.org/ 10.1186/s12940-017-0276-7.
- Zhang Z, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, et al. A population-based cohort study of respiratory disease and long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs. Environ Sci Technol. 2021;55:3807–18. https://doi.org/10.1021/acs. est.0c05931.
- Levy D, Gent M, Newhouse MT. Relationship between acute respiratory illness and air pollution levels in an industrial city. Am Rev Respir Dis. 1977;116:167–73. https://doi.org/ 10.1164/arrd.1977.116.2.167.
- Stieb DM, Szyszkowicz M, Rowe BH, Leech JA. Air pollution and emergency department visits for cardiac and respiratory conditions: a multi-city time-series analysis. Environ Health. 2009;8:25. https://doi.org/10.1186/1476-069X-8-25.
- 55. Stieb DM, Beveridge RC, Brook JR, Smith-Doiron M, Burnett RT, Dales RE, et al. Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. J Expo Anal Environ Epidemiol. 2000;10:461–77. https://doi. org/10.1038/sj.jea.7500112.
- Weichenthal SA, Lavigne E, Evans GJ, Godri Pollitt KJ, Burnett RT. Fine particulate matter and emergency room visits for respiratory illness. Effect modification by oxidative potential. Am J Respir Crit Care Med. 2016;194:577–86. https://doi. org/10.1164/rccm.201512-24340C.
- 57. Burnett RT, Dales RE, Raizenne ME, Krewski D, Summers PW, Roberts GR, et al. Effects of low ambient levels of ozone and

sulfates on the frequency of respiratory admissions to Ontario hospitals. Environ Res. 1994;65:172–94. https://doi.org/ 10.1006/enrs.1994.1030.

- 58. Albuquerque I, Alencar A, Angelo C, Azevedo T, Barcellos F, Coluna I, et al. Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas de clima do Brasil 1970-2019. Observatório do Clima Ed. Available at: https:// energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020. [accessed 1 May 2021].
- 59. Moraes SL, Almendra R, Santana P, Galvani E. Metereological variables and air pollution and their association with hospitalizations due to respiratory diseases in children: a case study in Sao Paulo, Brazil. Cad Saude Publica. 2019;35:e00101418. https://doi.org/10.1590/0102-311x00101418.
- 60. Carvalho RB, Carneiro MFH, Barbosa F, Batista BL, Simonetti J, Amantéa SL, et al. The impact of occupational exposure to traffic-related air pollution among professional motorcyclists from Porto Alegre, Brazil, and its association with genetic and oxidative damage. Environ Sci Pollut Res Int. 2018;25:18620–31. https://doi.org/10.1007/s11356-018-2007-1.
- 61. Santos UP, Garcia ML, Braga AL, Pereira LA, Lin CA, de André PA, et al. Association between traffic air pollution and reduced forced vital capacity: a study using personal monitors for outdoor workers. PloS One. 2016;11:e0163225. https://doi.org/ 10.1371/journal.pone.0163225.
- Ribeiro AG, Downward GS, Freitas CU, Chiaravalloti Neto F, Cardoso MRA, Latorre M. Incidence and mortality for respiratory cancer and traffic-related air pollution in Sao Paulo, Brazil. Environ Res. 2019;170:243–51. https://doi.org/10.1016/ j.envres.2018.12.034.
- Agudelo-Castañeda DM, Calesso Teixeira E, Alves L, Fernández-Niño JA, Rodríguez-Villamizar LA. Monthly-term associations between air pollutants and respiratory morbidity in south Brazil 2013-2016: amulti-city, time-series analysis. Int J Environ Res Public Health. 2019;16:3787. https://doi.org/10.3390/ ijerph16203787.
- 64. Bravo MA, Son J, de Freitas CU, Gouveia N, Bell ML. Air pollution and mortality in Sao Paulo, Brazil: effects of multiple pollutants and analysis of susceptible populations. J Expo Sci Environ Epidemiol. 2016;26:150–61. https://doi.org/10.1038/jes.2014.90.
- 65. Costa AF, Hoek G, Brunekreef B, Ponce de Leon AC. Air pollution and deaths among elderly residents of Sao Paulo, Brazil: an analysis of mortality displacement. Environ Health Perspect. 2017;125:349–54. https://doi.org/10.1289/EHP98.
- 66. Targino AC, Harrison RM, Krecl P, Glantz P, de Lima CH, Beddows D. Surface ozone climatology of South Eastern Brazil and the impact of biomass burning events. J Environ Manag. 2019;252:109645. https://doi.org/10.1016/j.jenvman.2019.109645.
- 67. Marlier ME, Bonilla EX, Mickley LJ. How do Brazilian fires affect air pollution and public health? Geohealth. 2020;4: e2020GH000331. https://doi.org/10.1029/2020GH000331.
- Nawaz MO, Henze DK. Premature deaths in Brazil associated with long-term exposure to PM_{2.5} from Amazon fires between 2016 and 2019. Geohealth. 2020;4:e2020GH000268. https:// doi.org/10.1029/2020GH000268.
- 69. Holm SM, Miller MD, Balmes J. Health effects of wildfire smoke in children and public health tools: a narrative review. Expo Sci Environ Epidemiol. 2021;31:1–20. https://doi.org/ 10.1038/s41370-020-00267-4.
- De Oliveira BFA, de Carvalho LVB, de Souza Mourão D, da Costa R, de Castro HA, Artaxo P, et al. Environmental exposure associated with oxidative stress biomarkers in children and adolescent residents in Brazilian Western Amazon. J Environ Prot. 2018;9:347–67. https://doi.org/10.4236/jep.2018.94023.

- 71. Jacobson L, de Souza Hacon S, de Castro HA, Ignotti E, Artaxo P, Saldiva PHN, et al. Acute effects of particulate matter and black carbon from seasonal fires on peak expiratory flow of schoolchildren in the Brazilian Amazon. PloS One. 2014;9:104177. https://doi.org/10.1371/journal. pone.0104177.
- 72. Silva P, Ignotti E, Oliveira B, Junger WL, Morais F, Artaxo P, et al. High risk of respiratory diseases in children in the fire period in Western Amazon. Rev Saúde Púb. 2016;50:29. https://doi.org/10.1590/S1518-8787.2016050005667.
- Andrade Filho VSD, Artaxo P, Hacon S, Carmo CND, Cirino G. Aerossóis de queimadas e doenças respiratórias em crianças, Manaus, Brasil. Rev Saúde Púb. 2013;47:239–47. https://doi. org/10.1590/S0034-8910.201304700401.
- 74. Do Carmo CN, Alves MB, Hacon SDS. Impact of biomass burning and weather conditions on children's health in a city of Western Amazon region. Air Qual Atmos Health. 2013;6:517–25. https://doi.org/10.1007/s11869-012-0191-6.
- 75. Mascarenhas MDM, Vieira LC, Lanzieri TM, Leal A, Duarte AF, Hatch DL. Poluição atmosférica devida à queima de biomassa florestal e atendimentos de emergência por doença respiratória em Rio Branco, Brasil-Setembro, 2005. J Bras Pneumol. 2008;34:42–6. https://doi.org/10.1590/S1806-37132008000100008.
- 76. Ignotti E, Hacon SDS, Junger WL, Mourão D, Longo K, Freitas S, et al. Air pollution and hospital admissions for respiratory diseases in the subequatorial Amazon: a time series approach. Cad Saúde Pública. 2010;26:747–61.
- 77. Freitas MC, Almeida SM, Pacheco AMG, Dionísio I, Repolho C, Caseiro A, et al. Characterisation of the seasonal exposure to air pollution for a respiratory epidemiological study. J Radioanal Nucl Chem. 2009;281:219–23. https://doi.org/10.1007/ s10967-0114-7.
- Freitas MC, Dionísio I, Beasley DG, Almeida SM, Dung HM, Repolho C, et al. Association between monthly-reported rhinitis by children from basic schools and monthly-averaged air pollutants, at Lisbon (Portugal). J Radioanal Nucl Chem. 2009;282:15–20. https://doi.org/10.1007/s10967-009-0185-5.
- Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Pio CA, et al. Evaluating children exposure to air pollutants for an epidemiological study. J Radioanal Nucl Chem. 2009;280:405–9. https://doi.org/10.1007/s10967-009-0535-3.
- Borrego C, Lopes M, Valente J, Santos J, Nunes T, Martins H, et al. Air pollution and child respiratory diseases: the Viseu case study, Portugal. Air Pollut XV. 2007;1:15–24. Available at: https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/101/17342.
- Martins PC, Valente J, Papoila AL, Caires I, Araújo-Martins J, Mata P, et al. Airways changes related to air pollution exposure in wheezing children. Eur Respir J. 2012;39:246–53. https:// doi.org/10.1183/09031936.00025111.
- 82. Neuparth N, Martins P, Caires I, Lopes C, Marques J, Borrego C, et al. Asthma and chronic bronchitis risk factors in the scope of INSPIRAR study Allergy, asthma & immunophysiology: from basic science to clinical application. In: In: Proceedings of the V World Asthma & COPD Forum, World Immunopathology Organization; 2012:103–8.
- Valente J, Pimentel C, Tavares R, Ferreira J, Lopes M, Borrego C. Individual exposure to air pollutants in a Portuguese urban industrialized area. J Toxicol Environ Health Part A. 2014;77:888–99. https://doi.org/10.1080/15287394.2014.910159.
- Farinha S, Cardoso BK, Martins M, Campos L, Tomaz E. Impact of air pollution on daily asthma symptoms. Acta Med Port. 2021;35:119–26. https://doi.org/10.20344/amp.13262.

- Alvim Ferraz MC, Faria Ferraz MC, Ferraz JM, Fonseca PI. Air pollution and lung diseases in Oporto area. Environ Monit Assess. 1988;11:183–92. https://doi.org/10.1007/ BF00401729.
- Sousa SIV, Alvim-Ferraz MC, Martins FG, Pereira MC. Ozone exposure and its influence on the worsening of childhood asthma. Allergy. 2009;64:1046–55. https://doi.org/10.1111/ j.1398-9995.2009.01946.x.
- Sousa SIV, Ferraz C, Alvim-Ferraz MCM, Martins FG, Vaz LG, Pereira MC. Spirometric tests to assess the prevalence of childhood asthma at Portuguese rural areas: influence of exposure to high ozone levels. Environ Int. 2011;37:474–8. https://doi. org/10.1016/j.envint.2010.11.014.
- Amaral AFS, Rodrigues AS. Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores, Portugal. Environ Res. 2007;103:419–23. https://doi.org/10.1016/j.envres.2006.06.016.
- Linhares D, Garcia PV, Viveiros F, Ferreira T, Rodrigues AS. Air pollution by hydrothermal volcanism and human pulmonary function. BioMed Res Int. 2015;2015:326794. https://doi.org/ 10.1155/2015/326794.
- Alves CA, Scotto MG, Freitas MC. Air pollution and emergency admissions for cardiorespiratory diseases in Lisbon (Portugal). Química Nova. 2010;33:337–44. Retrieved from http://www. scielo.br/scielo.php?script=sci_arttext&pid=S0100-404220re 3j10000200020&nrm=iso.
- 91. Freitas MC, Pacheco AMG, Verburg TG, Wolterbeek HT. Effect of particulate matter, atmospheric gases, temperature, and humidity on respiratory and circulatory diseases' trends in Lisbon, Portugal. Environ Monit Assess. 2010;162:113–21. https://doi.org/10.1007/s10661-009-0780-5.
- Cruz AMJ, Sarmento S, Almeida SM, Silva AV, Alves C, Freitas M, et al. Association between atmospheric pollutants and hospital admissions in Lisbon. Environ Sci Pollut Res Int. 2015;22:5500-10. https://doi.org/10.1007/s11356-014-3838-z.
- **93.** Moreira S, Silva Santos C, Tente H, Nogueira L, Ferreira F, Neto A. Morbilidade respiratória e exposição a partículas inaláveis na cidade de Lisboa. Acta Pediatr Port. 2008;39:223–32.
- 94. Rodrigues M, Natário I, Oliveira Martins MR. Estimate the effects of environmental determining factors on childhood asthma hospital admissions in Lisbon, Portugal: a time series modelling study. Theoret Applied Climatol. 2021;143:809–21. https://doi.org/10.1007/s00704-020-03415-w.
- Franco P, Gordo C, Marques da Costa E, Lopes A. Air pollution and emergency hospital admissions: evidences from Lisbon metropolitan area, Portugal. Appl Sci. 2020;10:7997. https:// doi.org/10.3390/app10227997.
- Almeida SM, Silva AV, Sarmento S. Effects of exposure to particles and ozone on hospital admissions for cardiorespiratory diseases in Setúbal, Portugal. J Toxicol Environ Health Part A. 2014;77:837–48. https://doi.org/10.1080/ 15287394.2014.887399.
- Azevedo J, Gonçalves F. Air pollution impact on asthma and bronchitis in Porto, Portugal, during the year 2005. Intech Open. 2011. https://doi.org/10.5772/17820.
- Azevedo JM, Gonçalves FLT, Andrade MF. Long-range ozone transport and its impact on respiratory and cardiovascular health in the north of Portugal. Int J Biometeorol. 2011;55:187–202. https://doi.org/10.1007/s00484-010-0324-2.
- Alves CA, Ferraz CA. Effects of air pollution on emergency admissions for chronic obstructive pulmonary diseases in Oporto, Portugal. Int J Environ Pollut. 2005;23:42–64. https://doi.org/10.1504/IJEP.2005.006395.
- 100. Nicolau R, Machado A. Avaliação do impacte da poluição atmosférica na saúde: uma aplicação aos concelhos de Matosinhos, Maia, Valongo e Lisboa. Relatório de execução do projecto GeoFASES. 2010. Available at: https://core.ac.uk/ download/pdf/70638697.pdf.

- 101. Martins A, Scotto M, Deus R, Monteiro A, Gouveia A. Association between respiratory hospital admissions and air quality in Portugal: a count time series approach. PloS One. 2021;16: e0253455. https://doi.org/10.1371/journal.pone.0253455.
- 102. Ayres-Sampaio D, Teodoro AC, Sillero N, Santos C, Fonseca J, Freitas A. An investigation of the environmental determinants of asthma hospitalizations: an applied spatial approach. Appl Geogr. 2014;47:10–9. https://doi.org/ 10.1016/j.apgeog.2013.11.011.
- 103. Oliveira M, Delerue-Matos C, Pereira MC, Morais S. Environmental particulate matter levels during 2017 large forest fires and megafires in the center region of Portugal: a public health concern? Int J Environ Res Public Health. 2020;17:1032 https://doir.org/10.3390/ijerph17031032.
- 104. Silveira C, Roebeling P, Lopes M, Ferreira J, Costa S, Teixeira JP, et al. Assessment of health benefits related to air quality improvement strategies in urban areas: an impact pathway approach. J Environ Manag. 2016;183:694–702. https://doi.org/10.1016/j.jenvman.2016.08.079.
- 105. Miranda AI, Ferreira J, Silveira C, Relvas H, Duque L, Roebeling P, et al. A cost-efficiency and health benefit approach to improve urban air quality. Sci Tot Environ. 2016;569-70:342-51. https://doi.org/10.1016/j.scitotenv.2016.06.102.
- 106. Campos PMD, Esteves AF, Leitão AA, Pires JCM. Design of air quality network of Luanda, Angola: urban air pollution assessment. Atmos Pollut Res. 2021;12:10118. https://doi.org/ 10.1016/j.apr.2021.101128.
- 107. Minua. Relatório do estado geral do ambiente em Angola, 326. Ministério do Urbanismo e Ambiente de Angola. Government of Angola; 2006. http://www.ecolex.org/server2.php/libcat/ docs/LI/MON-083704.pdf.
- 108. Arrais M, Lulua O, Quifica F, Rosado-Pinto J, Gama JMR, Taborda-Barata L. Prevalence of asthma, allergic rhinitis and eczema in 6–7-year-old schoolchildren from Luanda, Angola. Allergol Immunopathol. 2019;47:523–34. https://doi.org/ 10.1016/j.aller.2018.12.002. (Madr).
- 109. Arrais M, Lulua O, Quifica F, Rosado-Pinto J, Gama JMR, Taborda-Barata L. Prevalence of asthma and allergies in 13-14year-old adolescents from Luanda, Angola. Int J Tuberc Lung Dis. 2017;21:705–12. https://doi.org/10.5588/ijtld.16.0530.
- 110. Morgado MF, Simukanga K, Hicks K. Progress on Air Pollution Issues in Southern Africa. In: Simukanga K, Hicks K, eds. Proceedings of the 2nd Regional Policy Dialogue on Air Pollution and its Likely Transboundary Effects in Southern Africa, APINA, Mozambique; 2003. Progresson Air Pollution Issues.
- 111. Garcia FRM, Bandeira RR, Lise F. Influences in environmental quality of life in Mozambique. Acolhendo a alfabetização nos países de língua portuguesa. 2009;6. Available at: https://www.revistas.usp.br/reaa/article/ view/11520/13288.
- Moyo S, O'Keefe P, Sill M. The Southern African environment. Profiles of the SADC countries, 364. London: Earthscan Publications; 2003. https://doi.org/10.4324/9781315050391.
- 113. Magaia NI. Avaliação das emissões dos transported rodoviários na cidade de Maputo. Master's Degree thesis. Department of Chemical Engineering, Faculty of Engineering, Eduardo Mondlane University. Available at: https://docplayer.com.br/ 13656912-Avaliacao-das-emissoes-dos-transportes-rodoviarios-na-cidade-de-maputo.html [accessed 24 November 2021].
- 114. Cumbane JJ. Air pollution management in Southern African cities. Air pollution issues in Mozambique. In: Feresu S, ed. al (Org). Proceedings of the Regional Workshop on "*Better Air Quality in the Cities of Africa 2004*, Johannesburg: Stockhom Environment Institute, Sable Press; 2004:98–103.
- Schwela D. Review of urban air quality in Sub-Sharan Africa. The World Bank Clean Air Initiative in Sub-Saharan Cities. 2007; 260. Available at: https://openknowledge.worldbank.

org/bitstream/handle/10986/26864/677940WP0P07690020 120Box367897B0ACS.pdf?sequence=1&isAllowed=y. [accessed 22 May 2021].

- 116. Sitoe ECF. Eficiência energética e emissão de gases de efeito estufa nacadeia de produção, transporte e uso de carvão, vegetal no Posto Administrativo de Mahele. Graduation Degree thesis. Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University. Available at: http://monografias.uem.mz/jspui/handle/ 123456789/251. [accessed 24 November 2021].
- 117. Sumbana J, Sacarlal J, Rubino S. Air pollution and other risk factors might buffer COVID-19 severity in Mozambique. J Infect Dev Ctries. 2020;14:994–1000. https://doi.org/ 10.3855/jidc.13057.
- 118. Wright CY, Moore CE, Chersich M, Hester R, Schwerdtle PN, Mbayo GK, et al. A transdisciplinary approach for human health and well-being in Africa. Int J Environ Res Public Health. 2021;18:4258. https://doi.org/10.3390/jjerph18084258.
- 119. Roy R. The cost of air pollution in Africa. OECD Development Centre. Working Paper N° 333. September 2016. Available at: https://www.oecd-ilibrary.org/docserver/5jlqzq77x6f8-en.pdf?expires=1646157999&id=id&accname=guest&checksum=DC271DDABC52978820945BB845F18AD0 [accessed 20 September 2021].
- 120. WHO. Libreville declaration on health and environment in Africa. World Health; 2008. Available at: https://www.afro.who.int/sites/default/files/2017-06/decLibrevilleDeclaration.pdf [accessed 20 September 2021].
- 121. Implementação da declaração de Libreville sobre Saúde e Ambiente em África: compromisso de Luanda. 26 November 2010. Available at: https://www.afro.who.int/sites/default/ files/2017-06/PHE-Luanda-Commitment-pt.pdf [accessed 20 September 2021].

- 122. Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Hoffman B, Kim WJ, et al. Health benefits of air pollution reduction. Ann Am Thorac Soc. 2019;16:1478–87. https://doi.org/10.1513/ AnnalsATS.201907-538CME.
- 123. Geng X, Liu X, Li X, Wang T, Zhang J, Zheng Y, et al. Impact of ambient particulate matter on respiratory-related school absence: a case-crossover study in China. Air Qual Atmos Health. 2021;14:1203. https://doi.org/10.1007/s11869-021-01010-0.
- 124. Ansari M, Ehrampoush MH. Meteorological correlates and AirQ⁺ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ Res. 2019;170:141–50. https://doi.org/ 10.1016/j.envres.2018.11.046.
- 125. Yadav R, Nagori A, Mukherjee A, Singh V, Lodha R, Kabra SK, et al. Effects of ambient air pollution on emergency room visits of children for acute respiratory symptoms in Delhi, India. Environ Sci Pollut Res Int. 2021;28:45853–66. https://doi. org/10.1007/s11356-021-13600-7.
- **126.** Mendes A, Costa S, Ferreira J, Leitão J, Torres P, Silveira C, et al. Impactos da poluição atmosférica na Saúde: perspetivas do projeto FUTURAR. Boletim Epidemiológico do Instituto Nacional de Saúde. 2017;10:46–50.
- 127. Ferreira J, Leitão J, Monteiro A, Lopes M, Miranda AI. National emission ceilings in Portugal - trends, compliance and projections. Air Qual Atmos Health. 2017;10:1089–96. https://doi. org/10.1007/s11869-017-0496-6.
- 128. Ferreira J, Lopes D, Coelho S, Monteiro A, Lopes M, Jardim D, et al. Using air quality modelling and emission projections as a support to the 1st air pollution control program under NEC directive targets for 2030. WIT Transact Ecol Environ. 2019;236:247–55. https://doi.org/10.2495/AIR190241.