was read the article
array:24 [ "pii" => "S2531043721000386" "issn" => "25310437" "doi" => "10.1016/j.pulmoe.2021.01.005" "estado" => "S300" "fechaPublicacion" => "2021-05-01" "aid" => "1593" "copyright" => "Sociedade Portuguesa de Pneumologia" "copyrightAnyo" => "2021" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by/4.0/" "subdocumento" => "rev" "cita" => "Pulmonol. 2021;27:240-7" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:19 [ "pii" => "S2531043721000362" "issn" => "25310437" "doi" => "10.1016/j.pulmoe.2020.12.016" "estado" => "S300" "fechaPublicacion" => "2021-05-01" "aid" => "1591" "copyright" => "Sociedade Portuguesa de Pneumologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Pulmonol. 2021;27:248-56" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">The pulmonology TB series 2021. Edited by Raquel Duarte and Giovanni Battista Migliori</span>" "titulo" => "Tuberculosis, COVID-19 and hospital admission: Consensus on pros and cons based on a review of the evidence" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "248" "paginaFinal" => "256" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1681 "Ancho" => 2500 "Tamanyo" => 283696 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Hospitalization patterns (Average Length of Stay in days and proportion of admitted out of those treated) for patients undergoing treatment of multidrug-resistant tuberculosis in Europe.</p> <p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">ALOS: average length of stay.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Giovanni Battista Migliori, Dina Visca, Martin van den Boom, Simon Tiberi, Denise Rossato Silva, Rosella Centis, Lia D’Ambrosio, Tania Thomas, Emanuele Pontali, Laura Saderi, H. Simon Schaaf, Giovanni Sotgiu" "autores" => array:13 [ 0 => array:2 [ "nombre" => "Giovanni Battista" "apellidos" => "Migliori" ] 1 => array:2 [ "nombre" => "Dina" "apellidos" => "Visca" ] 2 => array:2 [ "nombre" => "Martin" "apellidos" => "van den Boom" ] 3 => array:2 [ "nombre" => "Simon" "apellidos" => "Tiberi" ] 4 => array:2 [ "nombre" => "Denise Rossato" "apellidos" => "Silva" ] 5 => array:2 [ "nombre" => "Rosella" "apellidos" => "Centis" ] 6 => array:2 [ "nombre" => "Lia" "apellidos" => "D’Ambrosio" ] 7 => array:2 [ "nombre" => "Tania" "apellidos" => "Thomas" ] 8 => array:2 [ "nombre" => "Emanuele" "apellidos" => "Pontali" ] 9 => array:2 [ "nombre" => "Laura" "apellidos" => "Saderi" ] 10 => array:2 [ "nombre" => "H. Simon" "apellidos" => "Schaaf" ] 11 => array:2 [ "nombre" => "Giovanni" "apellidos" => "Sotgiu" ] 12 => array:1 [ "colaborador" => "contributing members of the Global Tuberculosis Network" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043721000362?idApp=UINPBA00004E" "url" => "/25310437/0000002700000003/v1_202105020809/S2531043721000362/v1_202105020809/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2531043720300817" "issn" => "25310437" "doi" => "10.1016/j.pulmoe.2020.03.003" "estado" => "S300" "fechaPublicacion" => "2021-05-01" "aid" => "1464" "copyright" => "Sociedade Portuguesa de Pneumologia" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Pulmonol. 2021;27:219-39" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Predictive equations of maximum respiratory mouth pressures: A systematic review" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "219" "paginaFinal" => "239" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2829 "Ancho" => 2917 "Tamanyo" => 392448 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0060" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">PRISMA flow diagram of systematic search.</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">*Authors were contacted and no response was obtained.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "S. Souto-Miranda, C. Jácome, A. Alves, A. Machado, C. Paixão, A. Oliveira, A. Marques" "autores" => array:7 [ 0 => array:2 [ "nombre" => "S." "apellidos" => "Souto-Miranda" ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Jácome" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Alves" ] 3 => array:2 [ "nombre" => "A." "apellidos" => "Machado" ] 4 => array:2 [ "nombre" => "C." "apellidos" => "Paixão" ] 5 => array:2 [ "nombre" => "A." "apellidos" => "Oliveira" ] 6 => array:2 [ "nombre" => "A." "apellidos" => "Marques" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043720300817?idApp=UINPBA00004E" "url" => "/25310437/0000002700000003/v1_202105020809/S2531043720300817/v1_202105020809/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Thematic series: How I do it. Serie Editor: Stefano Nava</span>" "titulo" => "Nasal high flow oxygen in acute respiratory failure" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "240" "paginaFinal" => "247" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "M.L. Vega, L. Pisani" "autores" => array:2 [ 0 => array:4 [ "nombre" => "M.L." "apellidos" => "Vega" "email" => array:1 [ 0 => "laluvega@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "L." "apellidos" => "Pisani" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Department of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Alma Mater Studiorum University of Bologna, Bologna, Emilia-Romagna, Italy" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1362 "Ancho" => 3167 "Tamanyo" => 144011 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">SpO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>, PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span> and ROX index trends within the first four days of treatment. Patient’s SpO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>, PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span> and ROX index improve since NHF and prone position were implemented. (NHF: nasal high flow oxygen. SP: supine position, PP: prone position).</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Clinical case</span><p id="par0005" class="elsevierStylePara elsevierViewall">A 56-year-old man with SARS-COV2 infection was admitted to our hospital on November 1st, after 7 days of fever. Comorbidities comprised hypertension and obesity. On the third day after admission, he was transferred to our Respiratory Intensive Care Unit due to worsening of his respiratory condition, including notable shortness of breath with minimal exertion. On arrival, the patient was alert, haemodynamically stable. His respiratory rate was 25/min with a reservoir oxygen mask at 15<span class="elsevierStyleHsp" style=""></span>L/min. Blood gas analysis (ABG) revealed a severe hypoxemia and alkalosis respiratory (pH 7.51, PaCO<span class="elsevierStyleInf">2</span> 35<span class="elsevierStyleHsp" style=""></span>mmHg, PaO<span class="elsevierStyleInf">2</span> 118<span class="elsevierStyleHsp" style=""></span>mmHg, HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span> 27<span class="elsevierStyleHsp" style=""></span>mmol/L, PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span> 148). Due to patient’s gas exchange impairment and clinical progression, NHF therapy trial was attempted.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Initial temperature, inspired oxygen fraction (FiO<span class="elsevierStyleInf">2</span>) and flow rate were 34<span class="elsevierStyleHsp" style=""></span>°C, 60<span class="elsevierStyleHsp" style=""></span>L/min and 60% respectively.</p><p id="par0015" class="elsevierStylePara elsevierViewall">In order to reduce bio-aerosol dispersion, a surgical mask was placed over the patient’s mouth and nose.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a><a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a> shows bilateral consolidations with ground-glass areas, mainly in the posterior dependent zones on CT-scan. Based on this radiological picture, we continued NHF in awake prone positioning. <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> illustrates oxygen pulse saturation/FiO<span class="elsevierStyleInf">2</span> (SpO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>), oxygen blood pressure/FiO<span class="elsevierStyleInf">2</span> (PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>) ratios and ROX index trends within the first four days of treatment. ROX index is defined as the ratio of pulse oximetry/fraction of inspired oxygen to respiratory rate (RR). This index, described by Roca et al.,<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> identifies patients at risk of NHF failure. In particular, a ROX index of 4,88 is associated with a high risk of intubation. In conclusion, NHF setting was adjusted according to the maximum patient<span class="elsevierStyleBold"><span class="elsevierStyleUnderline">’</span></span>s comfort and the best effects in terms of distending pressure and FiO<span class="elsevierStyleInf">2</span> stability. FiO<span class="elsevierStyleInf">2</span> was also targeted to achieve oxygen saturation between 94–96%. Prone positioning was implemented because we felt that the mild distension pressure generated by NHF could be enhanced by placing the ventilated areas in a dependent position, leading to increased V/Q mismatch.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a></p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0020" class="elsevierStylePara elsevierViewall">Thermo-humidified nasal high flow (NHF) oxygen therapy is increasingly used in the management of respiratory failure. This therapy has recently gained attention as an alternative non-invasive respiratory support in several clinical scenarios, acute and chronic,<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> in order to enhance patient comfort and tolerance compared with standard oxygen by supplying heat and humidified mixture of air and oxygen at flows up to 60<span class="elsevierStyleHsp" style=""></span>L/minutes.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a></p><p id="par0025" class="elsevierStylePara elsevierViewall">NHF can be delivered through different devices. Although few studies have compared the clinical effects of different NHF systems, the purpose of this paper is to describe the major benefits of NHF and to provide a quick guide on how to implement this therapy in daily practice. We have also included a brief description of the most frequently used NHF systems: BioRespira® (IBD), Airvo 2® and OptiFlow® (Fisher and Paykel), TNI softFlow 50® (Masimo) and Precision Flow® (Vapotherm).</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Physiological benefits of NHF</span><p id="par0030" class="elsevierStylePara elsevierViewall">High flows air/oxygen mixture can be beneficial for both chronic and acute patients, who need additional oxygen supply:<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">-</span><p id="par0035" class="elsevierStylePara elsevierViewall">Matches patient’s inspiratory flow (stable FiO<span class="elsevierStyleInf">2</span>). Conventional oxygen therapy devices such as Venturi masks or reservoir masks have holes to prevent carbon dioxide rebreathing. The patient inspires the delivered oxygen, but part of the air can be rebreathed. In addition, if the patient’s ventilatory demand exceeds the flows provided by the device, the patient will breathe part of atmospheric air. For this reason, because of the relationship with the patient-breathing pattern, FiO<span class="elsevierStyleInf">2</span> can be much lower than predicted. Pisani et al.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> observed that calculated FiO<span class="elsevierStyleInf">2</span> approached the prescribed FiO<span class="elsevierStyleInf">2</span> when the delivered gas flow rates were greater than the patient’s peak inspiratory flow rate. This means that, with low-flow systems, as the peak inspiratory demand increase, we cannot accurately estimate the FiO<span class="elsevierStyleInf">2</span> that the patient is breathing. NHF delivers a flow that is much higher than the patient’s spontaneous inspiratory flow in any condition, so actual FiO<span class="elsevierStyleInf">2</span> is close to the predicted FiO<span class="elsevierStyleInf">2</span>.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">-</span><p id="par0040" class="elsevierStylePara elsevierViewall">Improves lung mucociliary clearance. In normal conditions, inhaled air is conditioned in the nasal airways. The air is warmed and humidified by the nasal mucosa because of its highly vascular sinusoid tissue. Humidification is always recommended for flow rates above 4<span class="elsevierStyleHsp" style=""></span>L/min, because the humidification function of the nasal mucosa could be insufficient. In addition, unwarmed and dry gas leads to a poor tolerance of oxygen therapy.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">-</span><p id="par0045" class="elsevierStylePara elsevierViewall">Washes out anatomical dead space and carbon dioxide (CO<span class="elsevierStyleInf">2</span>), allowing a higher fraction of minute ventilation to participate in gas exchange. Additionally, the nasal cannula, used for NHF, is the only respiratory interface that does not increase the instrumental dead space. With an oxygen mask, especially at low flow, carbon dioxide is rebreathed. NIV interfaces also increase the dead space. As a consequence, to maintain PaCO<span class="elsevierStyleInf">2</span> (and alveolar ventilation), the minute volume has to increase, either through respiratory rate or through tidal volume (VT), or even both. For these reasons, although NHF does not provide an active inspiratory support, it may improve the alveolar ventilation and decrease respiratory rate (RR).<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> Fraser et al.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> found that NHF leads to a reduction in respiratory rate of 10%, and in some patients, this reduction was associated with a reduction in hypercapnia.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">-</span><p id="par0050" class="elsevierStylePara elsevierViewall">Provides a mild distending pressure. Although NHF is an open system, high flow from the nasal cannula increases the airway pressure usually around 3<span class="elsevierStyleHsp" style=""></span>cmH<span class="elsevierStyleInf">2</span>O,<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> depending on the flow level and the nasal prong size in relation to the nostrils. Richie et al.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> conclude that NHF could deliver a clinically relevant mean positive airway pressure directly proportional to delivered gas flow rates. In addition, high flows could act as a resistance to exhalation when the mouth is closed.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">9,10</span></a> However, it remains unclear whether NHF is sufficient to increase lung volume or recruit the collapsed alveoli. Evaluating end-expiratory lung volume (EELV), Corley et al.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> reported increased end-expiratory lung impedance, suggesting increasing volumes and functional residual capacity with NHF compared with low-flow oxygen therapy. Also using electrical lung impedance tomography on healthy subjects in supine and prone position, Riera et al.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> found that NHF increased global EELV, suggesting an increase in functional residual capacity, regardless of the body position. This effect could be important in patients with a higher body mass index.</p></li><li class="elsevierStyleListItem" id="lsti0025"><span class="elsevierStyleLabel">-</span><p id="par0055" class="elsevierStylePara elsevierViewall">Attenuates inspiratory resistance and increases expiratory resistance. The attenuation of inspiratory resistance takes place essentially by providing an adequate warmed and humidified flow. It is known that in normal subjects,<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> inhalation of cold air causes the activation of specific receptors or osmoreceptors in the nasal mucosa, which may induce bronchoconstriction through a mechanism mediated by the activation of muscarinic receptors.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> Besides, NHF is able to increase the expiratory resistance depending on the size of the nasal cannula and the patient’s expiratory flow.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></p></li></ul></p><p id="par0060" class="elsevierStylePara elsevierViewall">A typical NHF system consists of a flow generator, active heated humidifier, single-limb heated circuit, and nasal cannula (or tracheostomy interface). There are three types of flow generators: air-oxygen blender devices, built-in flow generators (turbines), and entrainment systems (Venturi Systems). The humidifier can be a traditional “pass-over heated humidifying system” or a “filter-type humidifying system” in which humidification is generated by passing gas through a bundle of narrow tubes, or which requires an evaporative surface in contact with the gas. A heated-wire inspiratory circuit is preferred to ensure delivery of adequately humidified medical gas as well as to avoid circuit vapour loss and condensation. The lower the ambient temperature, the more likely there is to be condensation. One major reason for the patient’s discomfort or intolerance is the interface. Beyond the circuit, condensation may also accumulate in the nasal prongs, which results in water droplet spray into the nostrils. NHF interfaces are specifically for this purpose. They can vary from a slender nasal cannula similar in appearance to a regular nasal oxygen cannula in which both the internal diameter and nasal prong bore are narrow, to a large bore nasal prong. Using slender nasal cannulas results in high flow out of the nasal prongs. The volumetric flow is the volume of gas that passes in a certain unit of time. The speed at which the volume moves is the velocity. The speed, at a constant volumetric flow, varies inversely proportional to the cross-sectional area of the tube. This is the reason why the smaller the cross-sectional area of the nasal cannula, the greater the speed (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a></p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Implementation technique</span><p id="par0205" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="lis0010"><li class="elsevierStyleListItem" id="lsti0030"><span class="elsevierStyleLabel">a)</span><p id="par0065" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">General considerations</span> (regardless of the NHF device used)</p></li><li class="elsevierStyleListItem" id="lsti0035"><span class="elsevierStyleLabel">-</span><p id="par0070" class="elsevierStylePara elsevierViewall">Gas connection to the device (O<span class="elsevierStyleInf">2</span>, and compressed air if required).</p></li><li class="elsevierStyleListItem" id="lsti0040"><span class="elsevierStyleLabel">-</span><p id="par0075" class="elsevierStylePara elsevierViewall">Place distilled water in the humidifier.</p></li><li class="elsevierStyleListItem" id="lsti0045"><span class="elsevierStyleLabel">-</span><p id="par0080" class="elsevierStylePara elsevierViewall">Connect the circuit, appropriate to the system used.</p></li><li class="elsevierStyleListItem" id="lsti0050"><span class="elsevierStyleLabel">-</span><p id="par0085" class="elsevierStylePara elsevierViewall">Switch on and heat up the water until the temperature reaches 31−37<span class="elsevierStyleHsp" style=""></span>°C.</p></li><li class="elsevierStyleListItem" id="lsti0055"><span class="elsevierStyleLabel">-</span><p id="par0090" class="elsevierStylePara elsevierViewall">Select the size of the nasal cannula properly. When using a large bore nasal prong, it must not occlude more than 50% of the nostril.</p></li><li class="elsevierStyleListItem" id="lsti0060"><span class="elsevierStyleLabel">-</span><p id="par0095" class="elsevierStylePara elsevierViewall">Position the cannula correctly in the patient’s nostrils, to avoid lateral leakage.</p></li><li class="elsevierStyleListItem" id="lsti0065"><span class="elsevierStyleLabel">-</span><p id="par0100" class="elsevierStylePara elsevierViewall">Program the parameters, according to the equipment used (temperature, flow, and FiO<span class="elsevierStyleInf">2</span> if the setting is available).</p></li><li class="elsevierStyleListItem" id="lsti0070"><span class="elsevierStyleLabel">-</span><p id="par0105" class="elsevierStylePara elsevierViewall">Switch on the device (some devices allow parameters to be programmed once the machine is on).</p></li><li class="elsevierStyleListItem" id="lsti0075"><span class="elsevierStyleLabel">b)</span><p id="par0110" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">General monitoring</span></p></li><li class="elsevierStyleListItem" id="lsti0080"><span class="elsevierStyleLabel">-</span><p id="par0115" class="elsevierStylePara elsevierViewall">Patients must be spontaneously breathing, alert and must be able to protect the airway.</p></li><li class="elsevierStyleListItem" id="lsti0085"><span class="elsevierStyleLabel">-</span><p id="par0120" class="elsevierStylePara elsevierViewall">Check that there is no accumulation of condensed water in the tube, ensuring its inclination towards the heater.</p></li><li class="elsevierStyleListItem" id="lsti0090"><span class="elsevierStyleLabel">-</span><p id="par0125" class="elsevierStylePara elsevierViewall">Aspiration of patient’s secretions, if needed.</p></li><li class="elsevierStyleListItem" id="lsti0095"><span class="elsevierStyleLabel">-</span><p id="par0130" class="elsevierStylePara elsevierViewall">Check that the cannula is not occluded by a mucus plug or against the patient’s nose.</p></li><li class="elsevierStyleListItem" id="lsti0100"><span class="elsevierStyleLabel">-</span><p id="par0135" class="elsevierStylePara elsevierViewall">Make sure the patient is in a semi-seated position at 45°. NHF can be implemented in “awake prone position”, if needed.</p></li><li class="elsevierStyleListItem" id="lsti0105"><span class="elsevierStyleLabel">-</span><p id="par0140" class="elsevierStylePara elsevierViewall">Check that the device is not disconnected from the electrical source when using high-flow devices, because not many have an internal battery.</p></li><li class="elsevierStyleListItem" id="lsti0110"><span class="elsevierStyleLabel">c)</span><p id="par0145" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">General set up</span></p></li><li class="elsevierStyleListItem" id="lsti0115"><span class="elsevierStyleLabel">-</span><p id="par0150" class="elsevierStylePara elsevierViewall">Temperature: it must be targeted according to the patient’s comfort. The temperature needs to be set at higher values at cold weathers or high flows.</p></li><li class="elsevierStyleListItem" id="lsti0120"><span class="elsevierStyleLabel">-</span><p id="par0155" class="elsevierStylePara elsevierViewall">Flow: the maximum benefit of this treatment is achieved at higher flows, although the flow should also be titrated according to the patient's comfort. It is suggested starting with flows close to 50<span class="elsevierStyleHsp" style=""></span>L/m, according to the patient's tolerance, in order to increase or decrease the flow.</p></li><li class="elsevierStyleListItem" id="lsti0125"><span class="elsevierStyleLabel">-</span><p id="par0160" class="elsevierStylePara elsevierViewall">FiO<span class="elsevierStyleInf">2</span>: depending on the NHF device used, FiO<span class="elsevierStyleInf">2</span> can be a parameter to be programmed or a parameter that depends on the flow. By using an air-oxygen blender device, oxygen concentrations are stable. On the other hand, by using turbine devices, oxygen is supplied via a low-pressure system, while the device just monitors the oxygen concentration (FiO<span class="elsevierStyleInf">2</span>). Any rise in the flow, will decrease the FiO<span class="elsevierStyleInf">2</span>, and vice versa. Venturi high flow systems use a flow generator to create a high flow by Venturi. It is composed of a flow meter and an oxygen concentration monitor. Regardless of the system used, in all cases, FiO<span class="elsevierStyleInf">2</span> titration should depend on the SpO<span class="elsevierStyleInf">2</span> target, recommending an SpO<span class="elsevierStyleInf">2</span> range between 94% and 96%, or between 88%–92% in hypercapnic COPD patients.</p></li></ul></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">NHF devices</span><p id="par0165" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> summarizes the main characteristics associated with the currently available devices.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">BioRespira® (IBD)</span><p id="par0170" class="elsevierStylePara elsevierViewall">This innovative system is a “built-in high flow generator” with a turbine capable of generating high flows starting from the ambient air, mixed with medical oxygen that can be supplied via a hospital cylinder or medical gas plant. Despite being a turbine device, it guarantees a fixed FiO<span class="elsevierStyleInf">2</span> even when the flow changes. This control is based on an internal oxygen sensor and a valve that guarantees by opening and closing, the desired FiO<span class="elsevierStyleInf">2</span>. It is the only turbine system that allows setting a precise FiO<span class="elsevierStyleInf">2</span>, with a maximum achieved by 100%, independent of the variations of the flow setting. Originally, this device was invented for CPAP therapy, for this reason the flow range goes from 5 to 120<span class="elsevierStyleHsp" style=""></span>L/m and at the same time, the device allows an accurate monitoring of the airway pressure. This wide range of flow enables the patient to perform a combined therapy with CPAP requirement (flows >60<span class="elsevierStyleHsp" style=""></span>L/m) and NHF (flows <60<span class="elsevierStyleHsp" style=""></span>L/m) during resting periods. Both the nasal cannula and the tubing and humidification system are generic, recommending the use of a pass over system with a heated wire circuit, to avoid condensation and heat loss from the inspired air. Other parameters that can be monitored, apart from the airway pressure, are respiratory rate, SpO<span class="elsevierStyleInf">2</span>, heart rate and ROX index.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Airvo 2® (Fisher and Paykel)</span><p id="par0175" class="elsevierStylePara elsevierViewall">Fisher and Paykel defines this device as a “pass-over humidifier with integrated flow generator”. Its internal blower delivers high flow warmed and humidified gases to patients through a heated-wired circuit and a nasal cannula or a tracheotomy interface. Temperature can be set to three target dew-point settings in 31, 34 or 37<span class="elsevierStyleHsp" style=""></span>°C and flows can be set between 10−60<span class="elsevierStyleHsp" style=""></span>L/m. A flow meter up to 60<span class="elsevierStyleHsp" style=""></span>L/m of supplementary oxygen can be connected to achieve FiO<span class="elsevierStyleInf">2</span> around 90%. It contains an oxygen analyser to determine the oxygen fraction delivered to the patient, affected by changes to the flow setting or supplemental oxygen setting. The nasal prongs and tubing between the nasal prong and heated-wired inspiratory circuit are both large bore, and the flow to the prongs is delivered from only one side.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Optiflow® (Fisher and Pykel)</span><p id="par0180" class="elsevierStylePara elsevierViewall">This is a fixed-performance delivery device, also known as an “air-oxygen blender device”. With a blending system, separate pressurized air and O<span class="elsevierStyleInf">2</span> sources are input, and the gases are mixed with a precision valve (blender). This system allows a precise control over both FiO<span class="elsevierStyleInf">2</span> and total flow output. This blending system can provide flow rates from 30<span class="elsevierStyleHsp" style=""></span>L/m to 60<span class="elsevierStyleHsp" style=""></span>L/min and adjustable FiO<span class="elsevierStyleInf">2</span> from 21 to 100%. Humidification is achieved by a “pass over humidifier” connected to a heated wire circuit and a bore Nasal Cannula (Optiflow nasal cannula) or Trach Connection.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">TNI softFlow 50® (Masimo)</span><p id="par0185" class="elsevierStylePara elsevierViewall">This device is a “built in flow generator” which generates the flow through an internal turbine. The applicator plug (circuit) is a silicone heated-wired circuit that enables a nasal application through a slender nasal cannula (also heated-wired and made of silicone) as well as a specific tracheal application. The TNI softFlow can be operated with two different humidifier types, but it always consists of a “pass-over system” chamber (Intersurgical®), with 1<span class="elsevierStyleHsp" style=""></span>°C steps, within the range from 30 to 37<span class="elsevierStyleHsp" style=""></span>°C. It can be used with the “Humidifier Clinic” for patients in clinics or in care facilities, or with the “Humidifier Homecare” for patients at home. When supplemental oxygen is required, an external, medically approved oxygen source can be connected to the TNI softFlow using the lateral oxygen inlet port. If no oxygen supply is needed, the oxygen inlet port must be kept sealed by the protective cap. The minimal operational flow is 10<span class="elsevierStyleHsp" style=""></span>L/m, with 0,5<span class="elsevierStyleHsp" style=""></span>L/m steps, to a maximum value of60<span class="elsevierStyleHsp" style=""></span>L/m for a nasal application or 50<span class="elsevierStyleHsp" style=""></span>L/m for tracheal application.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Precision Flow Vapotherm®</span><p id="par0190" class="elsevierStylePara elsevierViewall">The Precision Flow has an electronic gas mixer (proportional solenoid/flow valve) similar to that found in mechanical ventilators. For this reason, it requires a supply of high-pressure air and oxygen. This allows the device to use FiO<span class="elsevierStyleInf">2</span> between 21 and 100% regardless of the flow. It uses a different humidification system from the conventional pass-over humidifiers, which consists of a cartridge of steam transfer that allows no direct contact between the gas and water phases. Thus, gas and water are separated by a micro-porous membrane (0.005<span class="elsevierStyleHsp" style=""></span>μm), which could represent a "protective barrier" for the gas flow to the patient. The circuit consists of a triple lumen supply tube: a central one, through which the gas flow circulates, surrounded by two external lumens through which hot water circulates to maintain the gas temperature (at the set temperature). This guarantees temperature uniformity (33<span class="elsevierStyleHsp" style=""></span>°C–39<span class="elsevierStyleHsp" style=""></span>°C range) throughout the circuit, reducing the possibility of condensation. The interface (Hi-VNI, Vapotherm) is a slender nasal cannula similar in appearance to a regular nasal oxygen cannula. Both the internal diameter and nasal prong bore are narrow, and this results in high flow out of the nasal prongs. The Precision Flow has a specially designed circuit to combine NHF with nitric oxide as well as helium-oxygen (Heliox) conditioned gas mixtures. This device has an internal battery. The battery takes 2<span class="elsevierStyleHsp" style=""></span>h to fully charge for one hour of use.</p><p id="par0195" class="elsevierStylePara elsevierViewall">In summary, NHF has recently gained attention as an alternative non-invasive respiratory support in several clinical scenarios. It is important to know the implementation technique of this treatment, as well as how to perform NHF with the different devices available in the market, because they each have different characteristics.</p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Conflicts of interest</span><p id="par0200" class="elsevierStylePara elsevierViewall">The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:8 [ 0 => array:3 [ "identificador" => "xres1505802" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1366514" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "sec0005" "titulo" => "Clinical case" ] 3 => array:2 [ "identificador" => "sec0010" "titulo" => "Physiological benefits of NHF" ] 4 => array:2 [ "identificador" => "sec0015" "titulo" => "Implementation technique" ] 5 => array:3 [ "identificador" => "sec0020" "titulo" => "NHF devices" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0025" "titulo" => "BioRespira® (IBD)" ] 1 => array:2 [ "identificador" => "sec0030" "titulo" => "Airvo 2® (Fisher and Paykel)" ] 2 => array:2 [ "identificador" => "sec0035" "titulo" => "Optiflow® (Fisher and Pykel)" ] 3 => array:2 [ "identificador" => "sec0040" "titulo" => "TNI softFlow 50® (Masimo)" ] 4 => array:2 [ "identificador" => "sec0045" "titulo" => "Precision Flow Vapotherm®" ] ] ] 6 => array:2 [ "identificador" => "sec0050" "titulo" => "Conflicts of interest" ] 7 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2020-12-16" "fechaAceptado" => "2021-01-18" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1366514" "palabras" => array:8 [ 0 => "High flow oxygen" 1 => "HFO" 2 => "Nasal high flow" 3 => "NHF" 4 => "High flow nasal cannula" 5 => "HFNC" 6 => "Acute respiratory failure" 7 => "ARF" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Thermo-humidified nasal high flow (NHF) oxygen therapy is increasingly used in the management of respiratory failure. This therapy has recently gained attention as an alternative non-invasive respiratory support in several clinical scenarios, including acute and chronic settings. NHF enhances the patient’s comfort and tolerance when compared with standard oxygen by supplying a heated and humidified mixture of air and oxygen at flows up to 60<span class="elsevierStyleHsp" style=""></span>L/min. It can be delivered through different devices. Although few studies have compared the clinical effects of different NHF systems, the purpose of this paper is to describe the major benefits of NHF and to provide a quick guide on how to implement this therapy in daily practice. We have also included a brief description of the most frequently used NHF systems.</p></span>" ] ] "multimedia" => array:9 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2004 "Ancho" => 2500 "Tamanyo" => 550775 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">CT-scan. Bilateral consolidations with ground-glass areas, mainly in the posterior dependent zones.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1362 "Ancho" => 3167 "Tamanyo" => 144011 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">SpO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>, PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span> and ROX index trends within the first four days of treatment. Patient’s SpO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>, PaO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span> and ROX index improve since NHF and prone position were implemented. (NHF: nasal high flow oxygen. SP: supine position, PP: prone position).</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 788 "Ancho" => 2500 "Tamanyo" => 58390 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Fluid velocity, at a constant flow, varies inversely with the cross-sectional area of the tube.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">NHF: nasal high flow. FiO<span class="elsevierStyleInf">2</span>: graction of inspired oxygen. O<span class="elsevierStyleInf">2</span>: oxygen. SpO<span class="elsevierStyleInf">2</span>: pulse oxygen saturation. BPM: beats per minute. RR: respiratory rate. ROX index: ratio of pulse oximetry/fraction of inspired oxygen to respiratory rate (SpO<span class="elsevierStyleInf">2</span>/FiO<span class="elsevierStyleInf">2</span>/RR).</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">BioRespira® IBD \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Airvo2 (F&P®) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Optiflow (F&P®) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">TNI softFlow 50 Masimo \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Precision Flow Vapotherm® \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><elsevierMultimedia ident="202105020810301761"></elsevierMultimedia> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><elsevierMultimedia ident="202105020810301762"></elsevierMultimedia> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><elsevierMultimedia ident="202105020810301763"></elsevierMultimedia> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><elsevierMultimedia ident="202105020810301764"></elsevierMultimedia> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><elsevierMultimedia ident="202105020810301765"></elsevierMultimedia> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FLOW (L/M) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">5−120 (NHF AND CPAP USE)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10−60 (5<span class="elsevierStyleHsp" style=""></span>L/M STEPS) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30- 60 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1060 (0,5 STEPS) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5−40 (1<span class="elsevierStyleHsp" style=""></span>L/M STEPS) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FLOW GENERATION \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BLOWER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BLOWER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BLENDER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BLOWER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ELECTRONIC BLENDER \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FIO<span class="elsevierStyleInf">2</span> INDEPENDENT OF SETUP FLOW \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">POSSIBILITY OF FIO<span class="elsevierStyleInf">2</span> 100% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TYPE OF CONNECTION O<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HIGH PRESSURE SYSTEM O<span class="elsevierStyleInf">2</span> LOW PRESSURE SYSTEM O<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LOW PRESSURE O<span class="elsevierStyleInf">2</span> (UP TO 30<span class="elsevierStyleHsp" style=""></span>L/M) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HIGH PRESSURE SYSTEM AIR AND O<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LOW PRESSURE SYSTEM O<span class="elsevierStyleInf">2</span> (UP TO 60<span class="elsevierStyleHsp" style=""></span>L/M) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HIGH PRESSURE SYSTEM AIR AND O<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NEED FOR COMPRESSED AIR FROM THE WALL \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">YES \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="3" align="left" valign="middle">BUILT-IN HUMMIDIFIER</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EXTERNAL GENERIC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">INCORPOATED F&P \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">EXTERNAL F&P \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">INCORPOATED INTERSURGICAL® \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">INCORPORATED \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PASS OVER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PASS OVER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PASS OVER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PASS OVER \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">FILTER-TYPE \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SYSTEM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SYSTEM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SYSTEM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SYSTEM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HUMIDIFYING SYSTEM \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TUBES (INSPIRATORY CIRCUIT) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GENERIC (HEATED WIRED SYSTEM RECCOMENDED) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SPECIFIC (HEATED WIRED SYSTEM) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GENERIC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SPECIFIC (HEATED WIRED SYSTEM) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SPECIFIC TRIPLE LUMEN PATIENT CIRCUIT HEATED BY WATER RESERVOIR \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">INTERFASE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GENERIC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">OPTIFLOW INTERFASE (SILICONE) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">OPTIFLOW INTERFASE. (SILICONE) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SPECIFIC: (SLENDER SILICONE HEATED WIRED NASAL CANNULA) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hi-VNI, Vapotherm: (SLENDER SILICONE CANNULA) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="2" align="left" valign="middle">NASAL: 3 SIZES, REGARDLES THE FLOW SET</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="2" align="left" valign="middle">NASAL: 3 SIZES, REGARDLES THE FLOW SET</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Standard-Plus: Flows up to 35<span class="elsevierStyleHsp" style=""></span>L/m \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " rowspan="3" align="left" valign="middle">TRACH MASK ADAPTER</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Large: Flows up to 60<span class="elsevierStyleHsp" style=""></span>L/m \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TRAQUEAL INTERFASE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TRAQUEAL INTERFASE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tracheal: Flows up to 50<span class="elsevierStyleHsp" style=""></span>L/m \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead rowgroup " rowspan="8" align="left" valign="middle">ON-SCREEN MONITORING</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FIO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MEASURED FIO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MEASURED FIO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">MEASURED FIO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FIO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FLOW \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FLOW \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FLOW \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FLOW \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET FLOW \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET GAS TEMPERATURE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET GAS TEMPERATURE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET GAS TEMPERATURE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SET GAS TEMPERATURE \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold"><span class="elsevierStyleUnderline">CONTINUOUS MONITORING OF PATIENT’S PARAMETERS:</span></span> AIRWAY PRESSURE \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold"><span class="elsevierStyleUnderline">CONTINUOUS MONITORING OF PATIENT’S PARAMETERS:</span></span> NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold"><span class="elsevierStyleUnderline">CONTINUOUS MONITORING OF PATIENT’’S PARAMETERS:</span></span> NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold"><span class="elsevierStyleUnderline">CONTINUOUS MONITORING OF PATIENT’S PARAMETERS:</span></span> NO \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold"><span class="elsevierStyleUnderline">CONTINUOUS MONITORING OF PATIENT’S PARAMETERS:</span></span> NO \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SPO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">BPM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">RR \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ROX INDEX \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2586802.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Main characteristics of most frequent used NHF devices.</p>" ] ] 4 => array:5 [ "identificador" => "202105020810301761" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 932 "Ancho" => 533 "Tamanyo" => 63521 ] ] ] 5 => array:5 [ "identificador" => "202105020810301762" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx2.jpeg" "Alto" => 829 "Ancho" => 579 "Tamanyo" => 42744 ] ] ] 6 => array:5 [ "identificador" => "202105020810301763" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx3.jpeg" "Alto" => 862 "Ancho" => 339 "Tamanyo" => 21025 ] ] ] 7 => array:5 [ "identificador" => "202105020810301764" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx4.jpeg" "Alto" => 769 "Ancho" => 419 "Tamanyo" => 37472 ] ] ] 8 => array:5 [ "identificador" => "202105020810301765" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx5.jpeg" "Alto" => 819 "Ancho" => 350 "Tamanyo" => 25877 ] ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:16 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Medical masks and respirators for the protection of healthcare workers from SARS-CoV-2 and other viruses" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Ippolito" 1 => "F. Vitale" 2 => "G. Accurso" 3 => "P. Iozzo" 4 => "C. Gregoretti" 5 => "A. Giarratano" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pulmoe.2020.04.009" "Revista" => array:7 [ "tituloSerie" => "Pulmonology." "fecha" => "2020" "volumen" => "26" "numero" => "July–August (4)" "paginaInicial" => "204" "paginaFinal" => "212" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32362505" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: the utility of the ROX index" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "O. Roca" 1 => "J. Messika" 2 => "B. Caralt" 3 => "M. García-de-Acilu" 4 => "B. Sztrymf" 5 => "J.D. Ricard" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jcrc.2016.05.022" "Revista" => array:7 [ "tituloSerie" => "J Crit Care." "fecha" => "2016" "volumen" => "35" "numero" => "October" "paginaInicial" => "200" "paginaFinal" => "205" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27481760" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "COVID-19 pandemic and non invasive respiratory management: every Goliath needs a David. An evidence based evaluation of problems" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.C. Winck" 1 => "N. Ambrosino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pulmoe.2020.04.013" "Revista" => array:7 [ "tituloSerie" => "Pulmonology." "fecha" => "2020" "volumen" => "26" "numero" => "July–August (4)" "paginaInicial" => "213" "paginaFinal" => "220" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32362507" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High flow through nasal cannula in exacerbated COPD patients: a systematic review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Pisani" 1 => "M. Astuto" 2 => "I. Prediletto" 3 => "F. Longhini" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pulmoe.2019.08.001" "Revista" => array:7 [ "tituloSerie" => "Pulmonology." "fecha" => "2019" "volumen" => "25" "numero" => "November–December (6)" "paginaInicial" => "348" "paginaFinal" => "354" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31591056" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Papazian" 1 => "A. Corley" 2 => "D. Hess" 3 => "J.F. Fraser" 4 => "J.P. Frat" 5 => "C. Guitton" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Intensive Care Med." "fecha" => "2016" "volumen" => "42" "paginaInicial" => "1336" "paginaFinal" => "1349" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J.E. Ritchie" 1 => "A.B. Williams" 2 => "C. Gerard" 3 => "H. Hockey" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Anaesth Intens Care." "fecha" => "2011" "volumen" => "39" "paginaInicial" => "1103" "paginaFinal" => "1110" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of nasal insufflation on arterial gas exchange and breathing pattern in patients with chronic obstructive pulmonary disease and hypercapnic respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.F. Fraser" 1 => "A.J. Spooner" 2 => "K.R. Dunster" 3 => "C.M. Anstey" 4 => "A. Corley" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/978-94-007-4546-9_4" "Revista" => array:6 [ "tituloSerie" => "Adv Exp Med Biol." "fecha" => "2013" "volumen" => "755" "paginaInicial" => "27" "paginaFinal" => "34" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22826046" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nasal high-flow therapy delivers low level positive airway pressure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Parke" 1 => "S. McGuinness" 2 => "M. Eccleston" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bja/aep280" "Revista" => array:6 [ "tituloSerie" => "Br J Anaesth." "fecha" => "2009" "volumen" => "103" "paginaInicial" => "886" "paginaFinal" => "890" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19846404" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "High flow nasal oxygen generates positive airway pressure in adult volunteers" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "N. Groves" 1 => "A. Tobin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.aucc.2007.08.001" "Revista" => array:6 [ "tituloSerie" => "Aust Crit Care." "fecha" => "2007" "volumen" => "20" "paginaInicial" => "126" "paginaFinal" => "131" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17931878" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The effects of flow on air-way pressure during nasal high-flow oxygen therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.L. Parke" 1 => "M.L. Eccleston" 2 => "S.P. McGuinness" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4187/respcare.01106" "Revista" => array:6 [ "tituloSerie" => "Respir Care." "fecha" => "2011" "volumen" => "56" "paginaInicial" => "1151" "paginaFinal" => "1155" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21496369" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A. Corley" 1 => "L.R. Caruana" 2 => "A.G. Barnett" 3 => "O. Tronstad" 4 => "J.F. Fraser" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bja/aer265" "Revista" => array:6 [ "tituloSerie" => "Br J Anaesth." "fecha" => "2011" "volumen" => "107" "paginaInicial" => "998" "paginaFinal" => "1004" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21908497" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of high-flow nasal cannula and body position on end-expiratory lung volume: a cohort study using electrical impedance tomography" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Riera" 1 => "P. Pérez" 2 => "J. Cortés" 3 => "O. Roca" 4 => "J.R. Masclans" 5 => "J. Rello" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Respir Care." "fecha" => "2013" "volumen" => "58" "paginaInicial" => "589" "paginaFinal" => "596" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Fontanari" 1 => "H. Burnet" 2 => "M.C. Zattara-Hartmann" 3 => "Y. Jammes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/jappl.1996.81.4.1739" "Revista" => array:7 [ "tituloSerie" => "J Appl Physiol." "fecha" => "1996" "volumen" => "81" "numero" => "4" "paginaInicial" => "1739" "paginaFinal" => "1743" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8904594" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Function of pulmonary neuronal M(2) muscarinic receptors in stable chronic obstructive pulmonary disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "L.S. On" 1 => "P. Boonyongsunchai" 2 => "S. Webb" 3 => "L. Davies" 4 => "P.M. Calverley" 5 => "R.W. Costello" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.163.6.2002129" "Revista" => array:7 [ "tituloSerie" => "Am J Respir Crit Care Med." "fecha" => "2001" "volumen" => "163" "numero" => "6" "paginaInicial" => "1320" "paginaFinal" => "1325" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11371395" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Research in high flow therapy: mechanisms of action" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K. Dysart" 1 => "T.L. Miller" 2 => "M.R. Wolfson" 3 => "T.H. Shaffer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.rmed.2009.04.007" "Revista" => array:7 [ "tituloSerie" => "Respir Med." "fecha" => "2009" "volumen" => "103" "numero" => "October (10)" "paginaInicial" => "1400" "paginaFinal" => "1405" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19467849" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physics for the health sciences" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C.R. Nave" 1 => "B.C. Nave" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:4 [ "edicion" => "3<span class="elsevierStyleSup">rd</span> ed." "fecha" => "1985" "editorial" => "Saunders" "editorialLocalizacion" => "Philadelphia" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/25310437/0000002700000003/v1_202105020809/S2531043721000386/v1_202105020809/en/main.assets" "Apartado" => array:4 [ "identificador" => "72879" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Review articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/25310437/0000002700000003/v1_202105020809/S2531043721000386/v1_202105020809/en/main.pdf?idApp=UINPBA00004E&text.app=https://journalpulmonology.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043721000386?idApp=UINPBA00004E" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 16 | 4 | 20 |
2024 October | 113 | 47 | 160 |
2024 September | 155 | 56 | 211 |
2024 August | 218 | 69 | 287 |
2024 July | 191 | 59 | 250 |
2024 June | 116 | 51 | 167 |
2024 May | 162 | 49 | 211 |
2024 April | 166 | 52 | 218 |
2024 March | 127 | 34 | 161 |
2024 February | 156 | 30 | 186 |
2024 January | 124 | 46 | 170 |
2023 December | 142 | 41 | 183 |
2023 November | 108 | 77 | 185 |
2023 October | 102 | 77 | 179 |
2023 September | 116 | 63 | 179 |
2023 August | 102 | 39 | 141 |
2023 July | 92 | 56 | 148 |
2023 June | 62 | 38 | 100 |
2023 May | 91 | 52 | 143 |
2023 April | 60 | 39 | 99 |
2023 March | 143 | 47 | 190 |
2023 February | 101 | 38 | 139 |
2023 January | 95 | 29 | 124 |
2022 December | 128 | 70 | 198 |
2022 November | 166 | 66 | 232 |
2022 October | 157 | 73 | 230 |
2022 September | 117 | 55 | 172 |
2022 August | 159 | 76 | 235 |
2022 July | 162 | 87 | 249 |
2022 June | 124 | 77 | 201 |
2022 May | 128 | 67 | 195 |
2022 April | 106 | 84 | 190 |
2022 March | 93 | 88 | 181 |
2022 February | 141 | 100 | 241 |
2022 January | 194 | 96 | 290 |
2021 December | 141 | 70 | 211 |
2021 November | 166 | 64 | 230 |
2021 October | 163 | 93 | 256 |
2021 September | 132 | 71 | 203 |
2021 August | 110 | 95 | 205 |
2021 July | 152 | 89 | 241 |
2021 June | 246 | 166 | 412 |
2021 May | 431 | 242 | 673 |
2021 April | 600 | 285 | 885 |
2021 March | 309 | 141 | 450 |
2021 February | 160 | 170 | 330 |