was read the article
array:20 [ "pii" => "X0873215915856126" "issn" => "08732159" "doi" => "10.1016/j.rppnen.2014.05.004" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Rev Port Pneumol. 2015;21:22-9" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 5067 "formatos" => array:3 [ "EPUB" => 244 "HTML" => 3897 "PDF" => 926 ] ] "itemSiguiente" => array:16 [ "pii" => "X0873215915856134" "issn" => "08732159" "doi" => "10.1016/j.rppnen.2014.01.010" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Rev Port Pneumol. 2015;21:30-5" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 6857 "formatos" => array:3 [ "EPUB" => 281 "HTML" => 5544 "PDF" => 1032 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Melatonin attenuates lung injury in a hind limb ischemia–reperfusion rat model" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "30" "paginaFinal" => "35" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "420v21n01-90385613fig1.jpg" "Alto" => 800 "Ancho" => 995 "Tamanyo" => 623285 ] ] "descripcion" => array:1 [ "en" => "Light microscopic view of lung tissues from ischemia¿reperfusion group. Extensive histological changes with inflammatory cell infiltration and partial destruction of lung architecture (magnification of 10 × 10, H&E staining)." ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Hamed Takhtfooladi, Mohammad Takhtfooladi, Fariborz Moayer, Sayed Mobarakeh" "autores" => array:4 [ 0 => array:2 [ "nombre" => "Hamed" "apellidos" => "Takhtfooladi" ] 1 => array:2 [ "nombre" => "Mohammad" "apellidos" => "Takhtfooladi" ] 2 => array:2 [ "nombre" => "Fariborz" "apellidos" => "Moayer" ] 3 => array:2 [ "nombre" => "Sayed" "apellidos" => "Mobarakeh" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0873215915856134?idApp=UINPBA00004E" "url" => "/08732159/0000002100000001/v0_201604141151/X0873215915856134/v0_201604141151/en/main.assets" ] "itemAnterior" => array:16 [ "pii" => "X0873215915856118" "issn" => "08732159" "doi" => "10.1016/j.rppnen.2014.03.017" "estado" => "S300" "fechaPublicacion" => "2015-01-01" "documento" => "article" "licencia" => "http://www.elsevier.com/open-access/userlicense/1.0/" "subdocumento" => "fla" "cita" => "Rev Port Pneumol. 2015;21:16-21" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 5635 "formatos" => array:3 [ "EPUB" => 245 "HTML" => 4237 "PDF" => 1153 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Long-term ventilation in children: Ten years later" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "16" "paginaFinal" => "21" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "420v21n01-90385611fig1.jpg" "Alto" => 843 "Ancho" => 1586 "Tamanyo" => 81996 ] ] "descripcion" => array:1 [ "en" => "Number of LTMV-10 children initiated on respiratory support per year." ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "C. Cancelinha, N. Madureira, P. Mação, P. Pleno, T. Silva, M.H. Estêvão, M. Félix" "autores" => array:7 [ 0 => array:2 [ "Iniciales" => "C." "apellidos" => "Cancelinha" ] 1 => array:2 [ "Iniciales" => "N." "apellidos" => "Madureira" ] 2 => array:2 [ "Iniciales" => "P." "apellidos" => "Mação" ] 3 => array:2 [ "Iniciales" => "P." "apellidos" => "Pleno" ] 4 => array:2 [ "Iniciales" => "T." "apellidos" => "Silva" ] 5 => array:2 [ "Iniciales" => "M.H." "apellidos" => "Estêvão" ] 6 => array:2 [ "Iniciales" => "M." "apellidos" => "Félix" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0873215915856118?idApp=UINPBA00004E" "url" => "/08732159/0000002100000001/v0_201604141151/X0873215915856118/v0_201604141151/en/main.assets" ] "en" => array:14 [ "idiomaDefecto" => true "titulo" => "Exploratory study comparing dysautonomia between asthmatic and non-asthmatic elite swimmers" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "22" "paginaFinal" => "29" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "M. Couto, D. Silva, P. Santos, S. Queirós, L. Delgado, A. Moreira" "autores" => array:6 [ 0 => array:4 [ "Iniciales" => "M." "apellidos" => "Couto" "email" => array:1 [ 0 => "marianafercouto@gmail.com" ] "referencia" => array:5 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor1" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] 3 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] 4 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "affd" ] ] ] 1 => array:3 [ "Iniciales" => "D." "apellidos" => "Silva" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] ] ] 2 => array:3 [ "Iniciales" => "P." "apellidos" => "Santos" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] ] ] 3 => array:3 [ "Iniciales" => "S." "apellidos" => "Queirós" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] ] ] 4 => array:3 [ "Iniciales" => "L." "apellidos" => "Delgado" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] 5 => array:3 [ "Iniciales" => "A." "apellidos" => "Moreira" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Laboratory of Immunology, Basic and Clinical Immunology Unit, Faculty of Medicine, University of Porto, Portugal" "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "affa" ] 1 => array:3 [ "entidad" => "Immunoallergology Department, Centro Hospitalar São João EPE, Porto, Portugal" "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "affb" ] 2 => array:3 [ "entidad" => "Center for Research in Health Technologies and Information Systems (CINTESIS), Portugal" "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "affc" ] 3 => array:3 [ "entidad" => "Instituto CUF & Hospital CUF Porto, Allergy Unit, Portugal" "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "affd" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor1" "etiqueta" => "<span class="elsevierStyleSup">*</span>" "correspondencia" => "Corresponding author. marianafercouto@gmail.com" ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig1" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "420v21n01-90385612fig1.jpg" "Alto" => 3882 "Ancho" => 2808 "Tamanyo" => 1126594 ] ] "descripcion" => array:1 [ "en" => "Procedure for measurement of pupillary light reflexes and pupil sizes and pupillometer displaying results. (A) The sequence of figures represent the adequate position to perform the scan: at the right angle to the patient's axis of vision, in a good alignment, closely adapted to the face and the pupil in the center of LCD screen. (B) The sequence of figures presents the pupil measurement phases: targeting phase (1), ready phase (2) and measurement phase. (C) Pupillometer display of one measurement results." ] ] ] "textoCompleto" => "<a name="sec0005" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Introduction</span><p class="elsevierStylePara">An increased risk for asthma has been recognized in elite athletes who take part in endurance sports, such as swimming.<a href="#bib1" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">1</span></a> Classical postulated mechanisms behind exercise-induced asthma (EIA) include the osmotic, or airway-drying, hypothesis.<a href="#bib2" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">2</span></a> As water is evaporated from the airway surface liquid, it becomes hyperosmolar and provides an osmotic stimulus for water to move from any cell nearby, resulting in cell shrinkage and release of inflammatory mediators that cause airway smooth muscle contraction. In fact, the airways of athletes present increased inflammatory cells and levels of histamine, cysteinyl leukotrienes and chemokines; however these inflammatory changes are not consistently related to lung function or disease exacerbations and it has been thought that they represent physical injury secondary to rigorous hyperpnoea that will heal with rest.<a href="#bib3" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">3</span></a><span class="elsevierStyleSup">, </span><a href="#bib4" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">4</span></a> Alternative hypotheses to explain EIA have been pursued.</p><p class="elsevierStylePara">Besides inflammatory mediators, the autonomic system also mediates the contraction and relaxation of bronchial smooth muscle. Cholinergic-parasympathetic nerves stimulate bronchoconstriction, whereas β2-adrenergic sympathetic and/or noncholinergic parasympathetic nerves cause bronchodilation.<a href="#bib3" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">3</span></a><span class="elsevierStyleSup">, </span><a href="#bib4" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">4</span></a> Intensive training can have affect autonomic regulation by promoting the predominance of vagal activity, as a compensatory response to the sympathetic stimulation associated with frequent and intense training.<a href="#bib2" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">2</span></a> It has been hypothesized that repeated intensive training could provoke vagal hegemony, which induces not only the well-known resting bradycardia of athletes, but could also lead to a predisposition for increased bronchomotor tone and therefore susceptibility to bronchospasm.<a href="#bib2" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">2</span></a> This autonomic nervous system imbalance is known as <span class="elsevierStyleItalic">dysautonomia</span> and it has been previously shown, using pupillometry, that pupillary light reflex of endurance runners reveals an increased parasympathetic activity and reduced sympathetic activity.<a href="#bib5" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">5</span></a> But the relationship between these observations and asthma is not established.</p><p class="elsevierStylePara">Research into the hypothesis of dysautonomia in the pathogenesis of asthma in athletes is urgently needed because definite answers would allow for better targeted treatment of this specific asthmatic population. In the particular case of elite swimmers, in both asthmatic and healthy ones, an increase in bronchial responsiveness correlating with exercise intensity was demonstrated after 3000 m swimming in an indoor swimming pool.<a href="#bib6" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">6</span></a> Moreover, neurogenic airway inflammation was recently associated with swimmers-asthma.<a href="#bib7" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">7</span></a> Therefore, we aimed to assess the relationship between autonomic nervous system and airway responsiveness of elite swimmers with asthma. It was hypothesized that airway hyperesponsiveness in asthmatic swimmers is related to increased parasympathetic activity.</p><a name="sec0010" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Methods</span><a name="sec0015" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Participants</span><p class="elsevierStylePara">Swimmers of the FCPorto main swimming team were invited to participate. Athletes of over 14 years-old, who agreed to take part in the study, were enrolled. To be included, participants had to be elite swimmers, free from any respiratory infection in the 2 weeks before testing, not having drunk coffee or smoked in the 2 h prior to testing, not having taken exercise on the testing day, not using contact lenses and not having taken their asthma medication for 48 h (except for inhaled corticosteroids, which they had been asked to stop taking for at least 2 weeks prior to the study).</p><p class="elsevierStylePara">Subjects who met any of the following criteria would have been excluded from the study: under any systemic medication which could affect the central nervous system; any topical eye treatment; systemic conditions with known ocular involvement; orbit structure damage or surrounding soft tissue with open lesion or edema on the day of testing; a past history of ocular abnormalities or trauma.</p><p class="elsevierStylePara">None of the subjects was excluded based on the above mentioned criteria.</p><a name="sec0020" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Study design</span><p class="elsevierStylePara">This is an exploratory cross-sectional study, developed in two visits. The first visit was in the morning (from 8 to 11 am) because of the circadian rhythm of the size of the pupil.<a href="#bib8" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">8</span></a> Medical history and potential medication were reviewed to determine eligibility. The eligible ones answered a structured questionnaire, and performed pupillometry, spirometry and skin prick testing. Subsequently, reversibility to salbutamol was evaluated. The second visit took place on a different day and a bronchial challenge with methacholine was performed to assess airway hyperesponsiveness (AHR). Asthma diagnosis was based on the typical clinical features in conjunction with objective documentation of airway dysfunction, either presenting reversibility or AHR, according to the criteria set by the International Olympic Committee to document asthma in athletes.<a href="#bib4" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">4</span></a><span class="elsevierStyleSup">, </span><a href="#bib9" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">9</span></a></p><p class="elsevierStylePara">The study was conducted according to the Declaration of Helsinki and approved by the Ethical Commission. All participants or their legal guardians/parents (in the case of participants under 18 years-old) signed an informed consent form.</p><a name="sec0025" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Procedures</span><p class="elsevierStylePara">Portable infrared PLR-200™ Pupillometer (NeurOptics Inc, CA, USA) was used for pupillary measurements. Subjects spent at least 15 min in a semi-dark and quiet room to allow their eyes to adjust to the low lighting levels, after which they were instructed to focus with the eye that was not being tested on a small target object standing at least 3 m away, keeping their head straight and eyes wide open during targeting and measurement (<a href="#f0005" class="elsevierStyleCrossRefs">Figure 1</a>A). If they blinked, the measurement was repeated. One stimulus of light-emitting diodes briefly illuminated the eye with 180 nm peak wave light (<a href="#f0005" class="elsevierStyleCrossRefs">Figure 1</a>B). At the end of the measurement cycle, a graph of the pupil diameters as a function of time appeared on the screen (<a href="#f0005" class="elsevierStyleCrossRefs">Figure 1</a>C). One pupil curve to each eye, starting with the left, was recorded for each subject, and the mean values of both eyes were used for statistical analysis. The following parameters were collected: the diameter of the pupil before (initial) and at constriction peak (minimal), in millimeters; the percentage of the constriction; the time of the onset of the constriction (latency), in seconds; the average and the maximum constriction velocities (ACV and MCV respectively), and the dilation velocity (ADV), all given in mm/s; and the total time taken by the pupil to recover 75% of the initial resting pupil size after it reached the peak of constriction (T75), in seconds. Pupil diameters, latency, ACV, MCV, and the constriction amplitude are related to <span class="elsevierStyleItalic">parasympathetic activity</span>, while ADV and T75 are measures of <span class="elsevierStyleItalic">sympathetic activity</span>.</p><a name="f0005" class="elsevierStyleCrossRefs"></a><p class="elsevierStylePara"><img src="420v21n01-90385612fig1.jpg" alt="Procedure for measurement of pupillary light reflexes and pupil sizes and pupillometer displaying results. (A) The sequence of figures represent the adequate position to perform the scan: at the right angle to the patient's axis of vision, in a good alignment, closely adapted to the face and the pupil in the center of LCD screen. (B) The sequence of figures presents the pupil measurement phases: targeting phase (1), ready phase (2) and measurement phase. (C) Pupillometer display of one measurement results."></img></p><p class="elsevierStylePara">Figure 1. Procedure for measurement of pupillary light reflexes and pupil sizes and pupillometer displaying results. (A) The sequence of figures represent the adequate position to perform the scan: at the right angle to the patient's axis of vision, in a good alignment, closely adapted to the face and the pupil in the center of LCD screen. (B) The sequence of figures presents the pupil measurement phases: targeting phase (1), ready phase (2) and measurement phase. (C) Pupillometer display of one measurement results.</p><p class="elsevierStylePara">Subjects underwent spirometry, which was carried out according to the American Thoracic Society criteria (ATS).<a href="#bib10" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">10</span></a> Results of spirometry are reported as forced expiratory volume in the first second (FEV<span class="elsevierStyleInf">1</span>), forced vital capacity (FVC) and forced expiratory flow in the middle portion of FVC (FEF<span class="elsevierStyleInf">25–75</span>); all are presented as both absolute and predicted values, according to published reference algorithms.<a href="#bib11" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">11</span></a> Airflow obstruction was defined as a FEV<span class="elsevierStyleInf">1</span>/FVC ratio lower than 0.70.<a href="#bib12" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">12</span></a> Lung function measurements were repeated 15 min after salbutamol inhalation (400 μg) in aerochamber to assess reversibility, which was defined as an increase on FEV<span class="elsevierStyleInf">1</span> ≥ 200 mL or 12% from baseline.<a href="#bib12" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">12</span></a> Bronchial challenge with methacholine was performed as recommended by ATS guidelines and accordingly medication was withheld.<a href="#bib13" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">13</span></a> Criteria for a positive challenge were, according to the International Olympic Committee, set to a provocative dose determining a 20% fall in FEV<span class="elsevierStyleInf">1</span> (PD<span class="elsevierStyleInf">20</span>) ≤3.2 μmol in steroid naïve athletes and to a PD<span class="elsevierStyleInf">20</span> ≤0.8 μmol in athletes on inhaled steroids for at least 1 month.<a href="#bib9" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">9</span></a></p><p class="elsevierStylePara">Subjects were divided by AHR severity according to PD<span class="elsevierStyleInf">20</span> in: no AHR (>7.8 μmol), borderline (3.2–7.8 μmol), mild (0.8–3.2 μmol), moderate (0.1–0.8 μmol) and severe (≤0.1 μmol) AHR. A PD<span class="elsevierStyleInf">20</span> ≤3.2 μmol was considered as clinically relevant AHR.</p><p class="elsevierStylePara">A structured questionnaire was applied that addressed demographic data, medications and medical conditions.</p><p class="elsevierStylePara">Atopy was defined as the presence of at least one positive skin prick test to common aeroallergen extracts (Leti<span class="elsevierStyleSup">®</span>, Madrid, Spain); positive (histamine 10 mg/mL) and negative controls were performed.</p><a name="sec0030" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Statistical analysis</span><p class="elsevierStylePara">Statistical analyses were performed with SPSS version 20.0. <span class="elsevierStyleItalic">p</span>-Values <0.05 were considered statistically significant. Continuous results are expressed as mean (95% confidence interval, CI) or, if not normally distributed, as median (minimum and maximum); categorical data are expressed as counts (%). Differences between groups were assessed with Student's <span class="elsevierStyleItalic">t</span>-test or Mann–Whitney in cases of non-normally distributed data, and Chi-Square or Fisher's exact tests for categorical variables.</p><p class="elsevierStylePara">Subjects were then categorized by AHR severity and differences between groups for pupillary parameters were assessed with 1-way ANOVA or Kruskal–Wallis if non-normally distributed data.</p><p class="elsevierStylePara">In individuals with clinically relevant AHR, Spearman's correlation test was used to assess the relation between PD<span class="elsevierStyleInf">20</span> and pupillary parameters.</p><a name="sec0035" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Results</span><p class="elsevierStylePara">Twenty-seven elite swimmers were enrolled, of which 11 (41%) had asthma. Demographic, personal and clinical features are presented in <a href="#t0005" class="elsevierStyleCrossRefs">Table 1</a>. Regarding their normal medication, 2 swimmers were under inhaled corticosteroids, 4 with a combination of long-acting β2-agonists plus inhaled corticosteroids and 2 were treated with anti-leukotrienes. All refrained from taking their regular medication prior to the study.</p><p class="elsevierStylePara">Table 1. Characteristics of asthmatic and non-asthmatic swimmers.</p><a name="t0005" class="elsevierStyleCrossRefs"></a><p class="elsevierStylePara"></p><table><tr align="left"><td> </td><td>Asthmatic swimmers (<span class="elsevierStyleItalic">n</span> = 11)</td><td>Non-asthmatic swimmers (<span class="elsevierStyleItalic">n</span> = 16)</td><td><span class="elsevierStyleItalic">p</span></td></tr><tr align="left"><td>Males, <span class="elsevierStyleItalic">n</span> (%)</td><td>8 (73)</td><td>6 (38)</td><td>0.072</td></tr><tr align="left"><td>Age (years)</td><td>17 [15–19]</td><td>18 [16–20]</td><td>0.479</td></tr><tr align="left"><td>BMI (kg/m<span class="elsevierStyleSup">2</span>)</td><td>21.5 [20.2–22.9]</td><td>21.3 [20.2–22.3]</td><td>0.725</td></tr><tr align="left"><td>Atopy, <span class="elsevierStyleItalic">n</span> (%)</td><td>5 (46)</td><td>6 (38)</td><td>0.679 <span class="elsevierStyleSup">a</span></td></tr><tr align="left"><td>Years of competition</td><td>8.9 [7.0–10.8]</td><td>9.6 [7.6–11.7]</td><td>0.602</td></tr><tr align="left"><td>Training hours per week</td><td>16.3 [13.1–19.4]</td><td>17.5 [16.1–18.9]</td><td>0.393</td></tr><tr align="left"><td>Previous diagnosis of asthma, <span class="elsevierStyleItalic">n</span> (%)</td><td>4 (36)</td><td>1 (6)</td><td>0.113 <span class="elsevierStyleSup">a</span></td></tr><tr align="left"><td>Previous diagnosis of rhinitis, <span class="elsevierStyleItalic">n</span> (%)</td><td>1 (9)</td><td>3 (18)</td><td>0.488 <span class="elsevierStyleSup">a</span></td></tr><tr align="left"><td>PD<span class="elsevierStyleInf">20</span> methacholine (μmol)</td><td>0.8 [0.4–1.2]</td><td>4.6 [3.3–5.8]</td><td><span class="elsevierStyleBold">0.001</span></td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">Lung function</span></td></tr><tr align="left"><td>FEV<span class="elsevierStyleInf">1</span>/FVC</td><td>83.5 [78.3–88.8]</td><td>88.0 [84.6–91.4]</td><td>0.236</td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">FVC</span></td></tr><tr align="left"><td>Liters</td><td>5.1 [4.4–5.8]</td><td>4.9 [4.1–5.7]</td><td>0.612</td></tr><tr align="left"><td>% of predicted</td><td>114.5 [107.0–122.0]</td><td>114.8 [108.5–121.0]</td><td>0.957</td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">FEV</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">1</span></span></td></tr><tr align="left"><td>Liters</td><td>4.3 [3.7–4.8]</td><td>4.3 [3.7–4.9]</td><td>0.863</td></tr><tr align="left"><td>% of predicted</td><td>111.1 [100.7–121.5]</td><td>115.6 [109.8–121.3]</td><td>0.379</td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">FEF</span><span class="elsevierStyleInf"><span class="elsevierStyleItalic">25–75</span></span></td></tr><tr align="left"><td>Liters</td><td>4.2 [3.4–5.1]</td><td>4.7 [4.0–5.4]</td><td>0.570</td></tr><tr align="left"><td>% of predicted</td><td>97.3 [78.2–116.4]</td><td>109.3 [97.3–121.4]</td><td>0.230</td></tr><tr align="left"><td>Airway obstruction, <span class="elsevierStyleItalic">n</span> (%)</td><td>1 (9)</td><td>0</td><td>0.219 <span class="elsevierStyleSup">a</span></td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">Increase in FEV1 after salbutamol</span></td></tr><tr align="left"><td>%</td><td>5.0 [2.0–8.0]</td><td>3.4 [1.7–5.4]</td><td>0.840</td></tr><tr align="left"><td>Milliliters</td><td>197.0 [87.2–306.8]</td><td>149.4 [61.5–237.3]</td><td>0.922</td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">Parasympathetic parameters</span></td></tr><tr align="left"><td>Maximal diameter (mm)</td><td>5.9 [4.6–7.3]</td><td>7.0 [6.4–7.6]</td><td>0.180</td></tr><tr align="left"><td>Minimum diameter (mm)</td><td>3.9 [2.9–4.9]</td><td>4.7 [4.0–5.4]</td><td>0.708</td></tr><tr align="left"><td>Percent of constriction</td><td>35.1 [31.9–38.3]</td><td>33.8 [29.3–38.4]</td><td>0.295</td></tr><tr align="left"><td>Latency (s)</td><td>0.2 [0.2–0.2]</td><td>0.2 [0.2–0.2]</td><td>0.183 <span class="elsevierStyleSup">b</span></td></tr><tr align="left"><td>ACV (mm/s)</td><td>4.0 [3.5–4.6]</td><td>4.1 [3.6–4.5]</td><td>0.664</td></tr><tr align="left"><td>MCV (mm/s)</td><td>5.7 [4.7–6.8]</td><td>5.5 [4.9–6.0]</td><td>0.592</td></tr><tr align="left"><td colspan="4"> </td></tr><tr align="left"><td colspan="4"><span class="elsevierStyleItalic">Sympathetic parameters</span></td></tr><tr align="left"><td>ADV (mm/s)</td><td>0.9 [0.7–1.2]</td><td>0.9 [0.8–1.0]</td><td>0.440</td></tr><tr align="left"><td>T75 (s)</td><td>2.4 [1.3–3.5]</td><td>3.1 [2.8–3.4]</td><td>0.154</td></tr></table><p class="elsevierStylePara">Data reported as mean [95% confidence interval] unless otherwise stated.<br></br>ACV: average constriction velocity; ADV: average dilation velocity; BMI: body mass index; FEV<span class="elsevierStyleInf">1</span>: forced expiratory volume in the first second of FVC; FVC: forced vital capacity; FEF<span class="elsevierStyleInf">25–75</span>: forced expiratory flow middle portion of FVC; MCV: Maximum constriction velocity; PD<span class="elsevierStyleInf">20</span>: provocative dose determining a 20% fall in FEV<span class="elsevierStyleInf">1</span>; T75: the total time taken by the pupil to recover 75% of the initial resting pupil size after it reached the peak of constriction.<br></br>In bold, p ≤ 0.05.<br></br></p><p class="elsevierStylePara">a Fisher Exact test.<br></br>b Mann–Whitney <span class="elsevierStyleItalic">U</span> test.<br></br></p><p class="elsevierStylePara">Pupillary response curves were easily recorded in all subjects (<a href="#f0010" class="elsevierStyleCrossRefs">Figure 2</a>). Pupillometry was repeated if blink artifacts occurred, but all participants were able to complete the measurements, except for T75 which was not retrieved by the device for all athletes. None reported discomfort.</p><a name="f0010" class="elsevierStyleCrossRefs"></a><p class="elsevierStylePara"><img src="420v21n01-90385612fig2.jpg" alt="Results of pupillary response variables: Mean (bold line) ± SD (traced lines) values of pupillary diameters among asthmatic and non-asthmatic swimmers."></img></p><p class="elsevierStylePara">Figure 2. Results of pupillary response variables: Mean (bold line) ± SD (traced lines) values of pupillary diameters among asthmatic and non-asthmatic swimmers.</p><p class="elsevierStylePara">Pupillometry measurements in asthmatics compared with non-asthmatic swimmers are presented in <a href="#t0005" class="elsevierStyleCrossRefs">Table 1</a> and <a href="#f0010" class="elsevierStyleCrossRefs">Figure 2</a>. Although lower pupil diameters and a higher percentage of constriction were observed in asthmatics, differences were not statistically significant.</p><p class="elsevierStylePara">When stratified by AHR severity, pupil diameters before (maximal) and at constriction peak (minimum) as well as the percentage of constriction were significantly lower among those with severe AHR (<a href="#t0010" class="elsevierStyleCrossRefs">Table 2</a>).</p><p class="elsevierStylePara">Table 2. Autonomic nervous system parameters across airway hyperresponsiveness (AHR) degrees of severity.</p><a name="t0010" class="elsevierStyleCrossRefs"></a><p class="elsevierStylePara"></p><table><tr align="left"><td> </td><td>No AHR (<span class="elsevierStyleItalic">n</span> = 3)</td><td>Borderline AHR (<span class="elsevierStyleItalic">n</span> = 6)</td><td>Mild AHR (<span class="elsevierStyleItalic">n</span> = 12)</td><td>Moderate AHR (<span class="elsevierStyleItalic">n</span> = 4)</td><td>Severe AHR (<span class="elsevierStyleItalic">n</span> = 2)</td><td><span class="elsevierStyleItalic">p</span></td></tr><tr align="left"><td colspan="7"><span class="elsevierStyleItalic">Parasympathetic parameters</span></td></tr><tr align="left"><td>Maximal diameter (mm)</td><td>6.4 ± 1.0</td><td>6.4 ± 0.9</td><td>6.9 ± 0.8</td><td>6.6 ± 0.6</td><td>4.9 ± 0.7</td><td><span class="elsevierStyleBold">0.04</span></td></tr><tr align="left"><td>Minimum diameter (mm)</td><td>4.3 ± 1.1</td><td>3.9 ± 0.7</td><td>4.7 ± 0.8</td><td>4.2 ± 0.5</td><td>2.8 ± 0.7</td><td><span class="elsevierStyleBold">0.03</span></td></tr><tr align="left"><td>Percent of constriction</td><td>34.3 ± 7.8</td><td>38.3 ± 2.2</td><td>33.3 ± 4.5</td><td>37.3 ± 1.9</td><td>42.8 ± 7.4</td><td><span class="elsevierStyleBold">0.05</span></td></tr><tr align="left"><td>Latency (s)</td><td>2.8 (2.6–3.0)</td><td>3.2 (2.7–3.5)</td><td>3.1 (1.7–3.8)</td><td>3.3 (3.3–3.3)</td><td>1.7 (1.7–1.7)</td><td>0.08 <span class="elsevierStyleSup">a</span></td></tr><tr align="left"><td>ACV (mm/s)</td><td>3.6 ± 0.9</td><td>4.3 ± 0.4</td><td>4.0 ± 0.3</td><td>3.8 ± 0.4</td><td>3.5 ± 0.4</td><td>0.13</td></tr><tr align="left"><td>MCV (mm/s)</td><td>5.1 ± 0.9</td><td>5.8 ± 0.4</td><td>5.5 ± 0.6</td><td>5.6 ± 0.4</td><td>5.1 ± 1.1</td><td>0.52</td></tr><tr align="left"><td colspan="7"> </td></tr><tr align="left"><td colspan="7"><span class="elsevierStyleItalic">Sympathetic parameters</span></td></tr><tr align="left"><td>ADV (mm/s)</td><td>0.9 ± 0.1</td><td>0.8 ± 0.2</td><td>0.9 ± 0.2</td><td>0.5 ± 0.3</td><td>0.9 ± 0.1</td><td>0.08</td></tr><tr align="left"><td>T75 (s)</td><td>2.8 ± 0.3</td><td>3.1 ± 0.4</td><td>2.8 ± 0.8</td><td>3.3 ± u.d.</td><td>1.7 ± u.d.</td><td>0.42</td></tr></table><p class="elsevierStylePara">Data reported as mean ± SD, except for latency which is expressed as median (min-max).<br></br>ACV: average constriction velocity; ADV: average dilation velocity; MCV: maximum constriction velocity; T75: the total time taken by the pupil to recover 75% of the initial resting pupil size after it reached the peak of constriction; u.d.: unavailable data.<br></br>In bold, p ≤ 0.05.<br></br></p><p class="elsevierStylePara">a Kruskal–Wallis test.<br></br></p><p class="elsevierStylePara">In the 18 swimmers with clinically relevant AHR, a significant correlation was found between PD<span class="elsevierStyleInf">20</span> and maximal (<span class="elsevierStyleItalic">r</span> = 0.67, <span class="elsevierStyleItalic">p</span> = 0.002), and minimal pupil's diameters (<span class="elsevierStyleItalic">r</span> = 0.75, <span class="elsevierStyleItalic">p</span> < 0.001), percentage of constriction (<span class="elsevierStyleItalic">r</span> = −0.59, <span class="elsevierStyleItalic">p</span> = 0.011) and latency (<span class="elsevierStyleItalic">r</span> = 0.490, <span class="elsevierStyleItalic">p</span> = 0.039), but not with ACV (<span class="elsevierStyleItalic">r</span> = 0.243, <span class="elsevierStyleItalic">p</span> = 0.332), MCV (<span class="elsevierStyleItalic">r</span> = 0.061, <span class="elsevierStyleItalic">p</span> = 0.810), ADV (<span class="elsevierStyleItalic">r</span> = 0.075, <span class="elsevierStyleItalic">p</span> = 0.776), and T75 (<span class="elsevierStyleItalic">r</span> = 0.373, <span class="elsevierStyleItalic">p</span> = 0.351).</p><a name="sec0040" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Discussion</span><p class="elsevierStylePara">In our exploratory study, no significant differences were observed in parasympathetic parameters between asthmatics and non-asthmatic elite swimmers. However, for those with severe AHR a significant difference became clear, suggesting that the increased parasympathetic tonus is particularly associated with the contraction of the bronchial smooth muscle.</p><p class="elsevierStylePara">Previous studies supporting this hypothesis of dysautonomy associated with training match our findings. Pichon et al. demonstrated that subjects with an increased AHR had a higher vagal tone,<a href="#bib14" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">14</span></a> which was corroborated by Park et al. findings of a relationship between AHR to methacholine and a diminished sweat secretion, tearing and salivary flow rate in healthy athletes.<a href="#bib15" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">15</span></a> All these studies have used AHR as an outcome measure, rather than asthma status. This also seems to be the case with swimmers. Among elite competitive adolescent swimmers, for both asthmatic and healthy ones, an increase in bronchial responsiveness correlating with the exercise intensity was demonstrated after 3000 m swimming in an indoor swimming pool.<a href="#bib6" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">6</span></a> Together with our results, this seems to point out that dysautonomia might contribute to the severity of airway reactivity in swimmers.</p><p class="elsevierStylePara">The lack of significant differences in parasympathetic outcomes between asthmatic and non-asthmatic swimmers is probably related to the fact that asthma a complex disease to which, besides AHR, there are many more parameters contributing. Asthma is defined as a clinical syndrome of intermittent respiratory symptoms triggered by viral infections, environmental allergens, or other stimuli, and is characterized by nonspecific airway hyperesponsiveness and inflammation.<a href="#bib16" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">16</span></a> While bronchoconstriction is largely dependent on airway smooth muscle cells and might be related to increased parasympathetic tonus, inflammation is a multi-cellular process involving airway epithelium, eosinophils, neutrophils, lymphocytes and mast cells.<a href="#bib17" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">17</span></a> Although in the particular case of athletes it has been proposed that inflammatory changes represent physical injury secondary to rigorous exercise,<a href="#bib3" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">3</span></a><span class="elsevierStyleSup">, </span><a href="#bib4" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">4</span></a> there are several issues that are unique to this population. In athletes, two different clinical phenotypes of asthma have been suggested by Haahtela et al. The pattern of “classical asthma” characterized by early onset childhood asthma, methacholine responsiveness, atopy and signs of eosinophilic airway inflammation; and another distinct phenotype with onset of symptoms during sports career, bronchial responsiveness to eucapnic hyperventilation test and a variable association with atopic markers and eosinophilic airway inflammation.<a href="#bib18" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">18</span></a> Our group has recently observed that athletes involved in water sports have a 3-fold increased risk of presenting the later phenotype of asthma – called “sports asthma”, not related to atopy but rather developed through their career (unpublished data). This suggests different predominant pathophysiological mechanisms of EIA in athletes and therefore a different role of the parasympathetic tonus.</p><p class="elsevierStylePara">In the particular case of swimming, EIA has been mainly thought to be associated with epithelial damage resulting from exposure to chloramines.<a href="#bib19" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">19</span></a> In recent years, the observation that regular pool attendance, especially by young children, was associated with lung hyperpermeability and increased risk of developing asthma led to the “pool chlorine hypothesis”.<a href="#bib20" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">20</span></a><span class="elsevierStyleSup">, </span><a href="#bib21" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">21</span></a> According to this, the increasing and largely uncontrolled exposure of young children to chlorination by-products contaminating the air of indoor swimming pools could have contributed to the childhood asthma rise in industrialized countries.<a href="#bib20" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">20</span></a><span class="elsevierStyleSup">, </span><a href="#bib21" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">21</span></a> In their studies, Bernard et al. described an association between asthma prevalence and cumulated pool attendance, as well as lung hyperpermeability and total IgE levels.<a href="#bib22" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">22</span></a> In fact, also in elite swimmers it has been shown that the endothelial cell layer, through vascular adhesion and permeability control, determines the infiltration of immune cells and leads to edema in the lungs.<a href="#bib23" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">23</span></a> It has been hypothesized that regular attendance at chlorinated swimming pools might have a role in the development of asthma by causing an increased lung permeability, which in turn would facilitate allergen sensitization.<a href="#bib23" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">23</span></a> We have previously demonstrated that swimmers that remain active at a 3-year follow-up significantly increase their levels of airway inflammation compared to those who quit swimming, but asthma incidence remained similar.<a href="#bib24" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">24</span></a> Taken together all these studies suggest that the EIA explanatory model in swimmers is not only related to inflammation and allergy, but will probable include the interplay between environmental training factors including allergens and ambient conditions and the athlete's personal risk factors such as genetic and neuro-immune-endocrine determinants.<a href="#bib2" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">2</span></a></p><p class="elsevierStylePara">As a major ambient factor, chloramines, and trichloramine in particular, are quite volatile and they are very easily inhaled and therefore act as potent irritants in the airways. Chemical stimulation of vagal sensory fibers by irritants reaching the lower airways can trigger tracheal and bronchial constriction, bronchospasm, mucus secretion, and neurogenic inflammation.<a href="#bib25" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">25</span></a> This neurogenic pathway is connected to release and action of neuropeptides, such as tachykinins, including substance P, or calcitonin gene related peptide (CGRP) from primary sensory nerve terminals, by activation of transient receptor potential (TRP) channels as a response of sensory neurons to noxious stimuli.<a href="#bib26" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">26</span></a><span class="elsevierStyleSup">, </span><a href="#bib27" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">27</span></a><span class="elsevierStyleSup">, </span><a href="#bib28" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">28</span></a> In a recent study, the role of TRP-ankyrin 1 channel on nociceptive airway sensory nerves in nonallergic AHR in relation with chloramines exposure was highlighted.<a href="#bib7" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">7</span></a> It was demonstrated in a mouse model, that AHR can be induced by a single hypochlorite-ovalbumin instillation, independently of bronchial influx of inflammatory cells.<a href="#bib7" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">7</span></a> These chemoreceptors are expressed on substance P-producing airway sensory nerve fibers and are involved in irritant-induced airway disease. The activation of substance P receptor leads to bronchoconstriction.<a href="#bib28" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">28</span></a> Our results help to support the influence of the nervous system in this hypothesis of an interaction between exposure to hypochlorite and AHR independent of bronchial inflammation.</p><p class="elsevierStylePara">A proof of concept of this hypothesis of a higher parasympathetic activity as an etiological mechanism for bronchoconstriction in athletes would require a better responsive effect to inhaled anticholinergics, than to other drugs. It has been confirmed by practical experiments arising from Norwegian competitive endurance athletes that revealed that they respond particularly well and with a higher reversibility to inhaled ipratropium bromide than to inhaled beta2-agonists.<a href="#bib29" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">29</span></a></p><p class="elsevierStylePara">Our study has important limitations. First, the reduced number of subjects included, which may prevent the study from reaching statistical significance; however, they were all elite swimmers. Secondly, the cross-sectional nature of our data. Though, it must be highlighted as a strength of our study, that a highly controlled evaluation was performed for all variables known to possibly interfere with the pupillometry.<a href="#bib8" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">8</span></a> Also, this is the first study to address the question of dysautonomia assessed by pupillometry related with swimmers asthma and AHR. Previous studies using this method to evaluate autonomic nervous system have not addressed the relationship with bronchial outcomes. An evaluation of Portuguese Olympic athletes showed that they have higher parasympathetic control, with concomitant reduction of the sympathetic tone.<a href="#bib30" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">30</span></a> Capão-Filipe et al. reported an increased parasympathetic activity and a reduced sympathetic activity of endurance runners when compared to other sports.<a href="#bib5" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">5</span></a> In our study, swimmers with clinically relevant AHR, showed a significant correlation between PD<span class="elsevierStyleInf">20</span> and 4 of the parasympathetic parameters, reflecting the reliability of pupillometry, since methacholine acts as a non-selective muscarinic receptor agonist in the parasympathetic nervous system. The recent development of a portable, user-friendly, and reliable infrared pupillometer, which allows for accurate, easy, and reproducible quantitative pupillary measurements, has revived the initial enthusiasm about the clinical usage of pupillometry.<a href="#bib7" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">7</span></a> It has been employed to evaluate a large number of conditions as it allows quantitative pupillary measurement of several parameters,<a href="#bib7" class="elsevierStyleCrossRefs"><span class="elsevierStyleSup">7</span></a> and now has revealed itself as a reliable tool to assess parasympathetic activity in elite swimmers.</p><p class="elsevierStylePara">To conclude, no significant differences were observed between asthmatic and non-asthmatic swimmers regarding parasympathetic parameters, but among those with clinically relevant airway hyperresponsiveness an association was seen. Although limited by the sample size, these findings provide further support for the role of autonomic nervous system in airway responsiveness development in elite swimmers and might be a new target for future therapeutic options in this particular population.</p><a name="sec0045" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Ethical disclosures</span><a name="sec0050" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Protection of human and animal subjects</span><p class="elsevierStylePara">The authors declare that the procedures followed were in accordance with the regulations of the relevant clinical research ethics committee and with those of the Code of Ethics of the World Medical Association (Declaration of Helsinki).</p><a name="sec0055" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Confidentiality of data</span><p class="elsevierStylePara">The authors declare that they have followed the protocols of their work center on the publication of patient data.</p><a name="sec0060" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Right to privacy and informed consent</span><p class="elsevierStylePara">The authors have obtained the written informed consent of the patients or subjects mentioned in the article. The corresponding author is in possession of this document.</p><a name="sec0065" class="elsevierStyleCrossRefs"></a><span class="elsevierStyleSectionTitle">Conflicts of interest</span><p class="elsevierStylePara">The authors have no conflicts of interest to declare.</p><p class="elsevierStylePara">Acknowledgments</p><p class="elsevierStylePara">To Q-Pharma for providing methacholine for bronchial provocation challenges. To Dr. Carla Martins for her inestimable value and availability for performing bronchial provocation challenges with methacholine. To Dr. Miguel Capão-Filipe and Professor Kai-Håkon Carlsen for critical discussions of the protocol.</p><p class="elsevierStylePara">Received 6 March 2014 <br></br>Accepted 14 May 2014 </p><p class="elsevierStylePara">Corresponding author. marianafercouto@gmail.com</p>" "pdfFichero" => "320v21n01a90385613pdf001.pdf" "tienePdf" => true "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec641000" "palabras" => array:6 [ 0 => "Airway hyperesponsiveness" 1 => "Autonomic nervous system" 2 => "Dysautonomia" 3 => "Exercise-induced asthma" 4 => "Parasympathetic activity" 5 => "Swimmers" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:1 [ "resumen" => "<span class="elsevierStyleSectionTitle">Background</span><br/><p class="elsevierStylePara">Dysautonomia has been independently associated with training and exercise-induced bronchoconstriction. In addition, neurogenic airway inflammation was recently associated with swimmers-asthma. We aimed to assess the relation between autonomic nervous system and airway responsiveness of asthmatic elite swimmers.</p><span class="elsevierStyleSectionTitle">Methods</span><br/><p class="elsevierStylePara">Twenty-seven elite swimmers, 11 of whom had asthma, were enrolled in this exploratory cross-sectional study. All performed spirometry with bronchodilation, skin prick tests and methacholine challenge according to the guidelines. Pupillometry was performed using PLR-200™ Pupillometer. One pupil light response curve for each eye was recorded and the mean values of pupil's maximal and minimal diameters, percentage of constriction, average and maximum constriction velocities (parasympathetic parameters), dilation velocity, and total time to recover 75% of the initial size (sympathetic parameters) were used for analysis. Asthma was defined using IOC-MC criteria; subjects were divided into airway hyperesponsiveness (AHR) severity according to methacholine PD<span class="elsevierStyleInf">20</span> in: no AHR, borderline, mild, moderate and severe AHR. Differences for pupillary parameters between groups and after categorization by AHR severity were assessed using SPSS 20.0 (<span class="elsevierStyleItalic">p</span> ≤ 0.05). In individuals with clinically relevant AHR, correlation between PD<span class="elsevierStyleInf">20</span> and pupillary parameters was investigated with Spearman's correlation test.</p><span class="elsevierStyleSectionTitle">Results</span><br/><p class="elsevierStylePara">No statistically significant differences were observed between asthmatic and non-asthmatic swimmers regarding parasympathetic parameters. When stratified by AHR, maximal and minimal diameters and percentage of constriction were significantly lower among those with severe AHR. Among swimmers with clinically relevant AHR (<span class="elsevierStyleItalic">n</span> = 18), PD<span class="elsevierStyleInf">20</span> correlated with <span class="elsevierStyleItalic">parasympathetic activity:</span> maximal (<span class="elsevierStyleItalic">r</span> = 0.67, <span class="elsevierStyleItalic">p</span> = 0.002) and minimal diameters (<span class="elsevierStyleItalic">r</span> = 0.75, <span class="elsevierStyleItalic">p</span> < 0.001), percentage of constriction (<span class="elsevierStyleItalic">r</span> = −0.59, <span class="elsevierStyleItalic">p</span> = 0.011) and latency (<span class="elsevierStyleItalic">r</span> = 0.490, <span class="elsevierStyleItalic">p</span> = 0.039).</p><span class="elsevierStyleSectionTitle">Conclusions</span><br/><p class="elsevierStylePara">No significant differences were observed between asthmatic and non-asthmatic swimmers regarding parasympathetic parameters, but among those with relevant AHR an association was found. Although limited by the sample size, these findings support the relation between dysautonomia and AHR in asthmatic swimmers.</p>" ] ] "multimedia" => array:4 [ 0 => array:8 [ "identificador" => "fig1" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "420v21n01-90385612fig1.jpg" "Alto" => 3882 "Ancho" => 2808 "Tamanyo" => 1126594 ] ] "descripcion" => array:1 [ "en" => "Procedure for measurement of pupillary light reflexes and pupil sizes and pupillometer displaying results. (A) The sequence of figures represent the adequate position to perform the scan: at the right angle to the patient's axis of vision, in a good alignment, closely adapted to the face and the pupil in the center of LCD screen. (B) The sequence of figures presents the pupil measurement phases: targeting phase (1), ready phase (2) and measurement phase. (C) Pupillometer display of one measurement results." ] ] 1 => array:8 [ "identificador" => "fig2" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "figura" => array:1 [ 0 => array:4 [ "imagen" => "420v21n01-90385612fig2.jpg" "Alto" => 2012 "Ancho" => 1666 "Tamanyo" => 324874 ] ] "descripcion" => array:1 [ "en" => "Results of pupillary response variables: Mean (bold line) ± SD (traced lines) values of pupillary diameters among asthmatic and non-asthmatic swimmers." ] ] 2 => array:6 [ "identificador" => "fig3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "descripcion" => array:1 [ "en" => "Procedure for measurement of pupillary light reflexes and pupil sizes and pupillometer displaying results. (A) The sequence of figures represent the adequate position to perform the scan: at the right angle to the patient's axis of vision, in a good alignment, closely adapted to the face and the pupil in the center of LCD screen. (B) The sequence of figures presents the pupil measurement phases: targeting phase (1), ready phase (2) and measurement phase. (C) Pupillometer display of one measurement results." ] ] 3 => array:6 [ "identificador" => "fig4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "copyright" => "Elsevier España" "descripcion" => array:1 [ "en" => "Results of pupillary response variables: Mean (bold line) ± SD (traced lines) values of pupillary diameters among asthmatic and non-asthmatic swimmers." ] ] ] "bibliografia" => array:2 [ "titulo" => "Bibliography" "seccion" => array:1 [ 0 => array:1 [ "bibliografiaReferencia" => array:30 [ 0 => array:3 [ "identificador" => "bib1" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br J Sports Med. 2012; 46:413-6." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "An overview of asthma and airway hyper-responsiveness in Olympic athletes." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Fitch KD." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/bjsports-2011-090814" "Revista" => array:7 [ "tituloSerie" => "Br J Sports Med. " "fecha" => "2012" "volumen" => "46" "paginaInicial" => "413" "paginaFinal" => "416" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22228581" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673615608224" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib2" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Exercise-induced asthma: why is it so frequent in Olympic athletes?. Expert Rev Respir Med. 2011; 5:1-3." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Exercise-induced asthma: why is it so frequent in Olympic athletes?." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Moreira A" 1 => "Delgado L" 2 => "Carlsen KH." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1586/ers.10.88" "Revista" => array:6 [ "tituloSerie" => "Expert Rev Respir Med. " "fecha" => "2011" "volumen" => "5" "paginaInicial" => "1" "paginaFinal" => "3" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21348579" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib3" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Exercise-induced hypersensitivity syndromes in recreational and competitive athletes: a PRACTALL consensus report (what the general practitioner should know about sports and allergy). Allergy. 2008; 63:953-61." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Exercise-induced hypersensitivity syndromes in recreational and competitive athletes: a PRACTALL consensus report (what the general practitioner should know about sports and allergy)." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Schwartz LB" 1 => "Delgado L" 2 => "Craig T" 3 => "Bonini S" 4 => "Carlsen KH" 5 => "Casale TB" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1398-9995.2008.01802.x" "Revista" => array:6 [ "tituloSerie" => "Allergy. " "fecha" => "2008" "volumen" => "63" "paginaInicial" => "953" "paginaFinal" => "961" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18691297" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib4" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN. Allergy. 2008; 63:387-403." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Carlsen K-H" 1 => "Anderson S" 2 => "Bjermer L" 3 => "Bonini S" 4 => "Brusasco V" 5 => "Canonica W" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1398-9995.2008.01662.x" "Revista" => array:7 [ "tituloSerie" => "Allergy. " "fecha" => "2008" "volumen" => "63" "paginaInicial" => "387" "paginaFinal" => "403" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18315727" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673613606480" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib5" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Assessment of autonomic function in high level athletes by pupillometry. Auton Neurosci. 2003; 104:66-72." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Assessment of autonomic function in high level athletes by pupillometry." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Capão-Filipe J" 1 => "Falcão-Reis F" 2 => "Castro-Correia J" 3 => "Barros H." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Auton Neurosci. " "fecha" => "2003" "volumen" => "104" "paginaInicial" => "66" "paginaFinal" => "72" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12559205" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib6" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "The response to heavy swimming exercise in children with and without bronchial asthma. En: Oseid S., Carlsen K.H., editors. Children and exercise XIII. Champaign, IL: Human Kinetics Publishers Inc.; 1989. 351-60." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "The response to heavy swimming exercise in children with and without bronchial asthma." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Carlsen KH" 1 => "Oseid S" 2 => "Odden H" 3 => "Mellbye E." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "titulo" => "The response to heavy swimming exercise in children with and without bronchial asthma." "paginaInicial" => "351" "paginaFinal" => "360" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib7" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of nonallergic airway hyperreactivity in mice. Am J Respir Crit Care Med. 2013; 187:486-93." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of nonallergic airway hyperreactivity in mice." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Hox V" 1 => "Vanoirbeek JA" 2 => "Alpizar YA" 3 => "Voedisch S" 4 => "Callebaut I" 5 => "Bobic S" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/rccm.201208-1358OC" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med. " "fecha" => "2013" "volumen" => "187" "paginaInicial" => "486" "paginaFinal" => "493" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23262517" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib8" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Clinical implications of quantitative infrared pupillometry in neurosurgical patients. Neurocrit Care. 2006; 5:55-60." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Clinical implications of quantitative infrared pupillometry in neurosurgical patients." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Fountas KN" 1 => "Kapsalaki EZ" 2 => "Machinis TG" 3 => "Boev AN" 4 => "Robinson JS" 5 => "Troup EC." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1385/NCC:5:1:55" "Revista" => array:7 [ "tituloSerie" => "Neurocrit Care. " "fecha" => "2006" "volumen" => "5" "paginaInicial" => "55" "paginaFinal" => "60" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16960298" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673612613762" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib9" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "IOC's medical, code. Lausanne: International Olympic Committee; 2002." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "IOC's medical, code." "idioma" => "es" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Medical Commission of the International Olympic" 1 => "Committee." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:2 [ "titulo" => "IOC's medical, code." "fecha" => "2002" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib10" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Standardisation of spirometry. Eur Respir J. 2005; 26:319-38." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Standardisation of spirometry." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Miller MR" 1 => "Hankinson J" 2 => "Brusasco V" 3 => "Burgos F" 4 => "Casaburi R" 5 => "Coates A" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1183/09031936.05.00034805" "Revista" => array:6 [ "tituloSerie" => "Eur Respir J. " "fecha" => "2005" "volumen" => "26" "paginaInicial" => "319" "paginaFinal" => "338" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16055882" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib11" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med. 2008; 177:253-60." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Reference ranges for spirometry across all ages: a new approach." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Stanojevic S" 1 => "Wade A" 2 => "Stocks J" 3 => "Hankinson J" 4 => "Coates AL" 5 => "Pan H" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/rccm.200708-1248OC" "Revista" => array:7 [ "tituloSerie" => "Am J Respir Crit Care Med. " "fecha" => "2008" "volumen" => "177" "paginaInicial" => "253" "paginaFinal" => "260" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18006882" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673612621333" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib12" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Interpretative strategies for lung function tests. Eur Respir J. 2005; 26:948-68." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Interpretative strategies for lung function tests." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Pellegrino R" 1 => "Viegi G" 2 => "Brusasco V" 3 => "Crapo RO" 4 => "Burgos F" 5 => "Casaburi R" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1183/09031936.05.00035205" "Revista" => array:6 [ "tituloSerie" => "Eur Respir J. " "fecha" => "2005" "volumen" => "26" "paginaInicial" => "948" "paginaFinal" => "968" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16264058" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib13" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors. Am J Respir Crit Care Med. 2000; 161:309-29." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Crapo RO" 1 => "Casaburi R" 2 => "Coates AL" 3 => "Enright PL" 4 => "Hankinson JL" 5 => "Irvin CG" 6 => "et-al." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.161.1.ats11-99" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med. " "fecha" => "2000" "volumen" => "161" "paginaInicial" => "309" "paginaFinal" => "329" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10619836" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib14" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Parasympathetic airway response and heart rate variability before and at the end of methacholine challenge. Chest. 2005; 127:23-9." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Parasympathetic airway response and heart rate variability before and at the end of methacholine challenge." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Pichon A" 1 => "Bisschop C" 2 => "Diaz V" 3 => "Denjean A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1378/chest.127.1.23" "Revista" => array:6 [ "tituloSerie" => "Chest. " "fecha" => "2005" "volumen" => "127" "paginaInicial" => "23" "paginaFinal" => "29" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15653958" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib15" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Exercise-induced asthma may be associated with diminished sweat secretion rates in humans. Chest. 2008; 134:552-8." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Exercise-induced asthma may be associated with diminished sweat secretion rates in humans." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Park C" 1 => "Stafford C" 2 => "Lockette W." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1378/chest.08-0366" "Revista" => array:6 [ "tituloSerie" => "Chest. " "fecha" => "2008" "volumen" => "134" "paginaInicial" => "552" "paginaFinal" => "558" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18641089" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib16" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Pathogenesis of asthma. Clin Exp Allergy. 2008; 38:872-97." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Pathogenesis of asthma." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Holgate S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1365-2222.2008.02971.x" "Revista" => array:7 [ "tituloSerie" => "Clin Exp Allergy. " "fecha" => "2008" "volumen" => "38" "paginaInicial" => "872" "paginaFinal" => "897" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18498538" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673615608224" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib17" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Asthma pathogenesis. En: Adkinson editors. Middleton''s allergy: principles and practice. 7th ed. Philadelphia: Mosby; 2008. 893-919." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Asthma pathogenesis." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Holgate S" 1 => "Lemanske R" 2 => "O’Byrne P" 3 => "Kakumanu S" 4 => "Busse W." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "titulo" => "Asthma pathogenesis." "paginaInicial" => "893" "paginaFinal" => "919" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib18" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Mechanisms of asthma in Olympic athletes – practical implications. Allergy. 2008; 63:685-94." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Mechanisms of asthma in Olympic athletes – practical implications." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Haahtela T" 1 => "Malmberg P" 2 => "Moreira A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1398-9995.2008.01686.x" "Revista" => array:6 [ "tituloSerie" => "Allergy. " "fecha" => "2008" "volumen" => "63" "paginaInicial" => "685" "paginaFinal" => "694" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18445185" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib19" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Airway dysfunction in swimmers. Br J Sports Med. 2012; 46:402-6." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Airway dysfunction in swimmers." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Bougault V" 1 => "Boulet LP." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/bjsports-2011-090821" "Revista" => array:6 [ "tituloSerie" => "Br J Sports Med. " "fecha" => "2012" "volumen" => "46" "paginaInicial" => "402" "paginaFinal" => "406" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22247299" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib20" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Chlorination products: emerging links with allergic diseases. Curr Med Chem. 2007; 14:1771-82." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Chlorination products: emerging links with allergic diseases." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Bernard A." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Curr Med Chem. " "fecha" => "2007" "volumen" => "14" "paginaInicial" => "1771" "paginaFinal" => "1782" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17627515" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib21" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Infant swimming in chlorinated pools and the risks of bronchiolitis, asthma and allergy. Eur Respir J. 2010; 36:41-7." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Infant swimming in chlorinated pools and the risks of bronchiolitis, asthma and allergy." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Voisin C" 1 => "Sardella A" 2 => "Marcucci F" 3 => "Bernard A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1183/09031936.00118009" "Revista" => array:7 [ "tituloSerie" => "Eur Respir J. " "fecha" => "2010" "volumen" => "36" "paginaInicial" => "41" "paginaFinal" => "47" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20075053" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673608616888" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib22" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Lung hyperpermeability and asthma prevalence in schoolchildren: unexpected associations with the attendance at indoor chlorinated swimming pools. Occup Environ Med. 2003; 60:385-94." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Lung hyperpermeability and asthma prevalence in schoolchildren: unexpected associations with the attendance at indoor chlorinated swimming pools." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:9 [ 0 => "Bernard A" 1 => "Carbonnelle S" 2 => "Michel O" 3 => "Higuet S" 4 => "de Burbure C" 5 => "Buchet J-P" 6 => "Hermans C" 7 => "Dumont X" 8 => "Doyle I." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Occup Environ Med. " "fecha" => "2003" "volumen" => "60" "paginaInicial" => "385" "paginaFinal" => "394" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12771389" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib23" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Airway vascular damage in elite swimmers. Respir Med. 2011; 105:1761-5." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Airway vascular damage in elite swimmers." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Moreira A" 1 => "Palmares C" 2 => "Lopes C" 3 => "Delgado L." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.rmed.2011.05.011" "Revista" => array:6 [ "tituloSerie" => "Respir Med. " "fecha" => "2011" "volumen" => "105" "paginaInicial" => "1761" "paginaFinal" => "1765" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21669516" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib24" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Effect of competitive swimming on airway inflammation: a 3-yr longitudinal study. Pediatr Allergy Immunol. 2014; 25:193-5." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Effect of competitive swimming on airway inflammation: a 3-yr longitudinal study." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Couto M" 1 => "Andrade P" 2 => "Pereira M" 3 => "Araújo J" 4 => "Moreira P" 5 => "Delgado L" 6 => "Moreira A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/pai.12172" "Revista" => array:6 [ "tituloSerie" => "Pediatr Allergy Immunol. " "fecha" => "2014" "volumen" => "25" "paginaInicial" => "193" "paginaFinal" => "195" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24383703" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib25" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology. 2008; 23:360-70." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Bessac B" 1 => "Jordt S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/physiol.00026.2008" "Revista" => array:6 [ "tituloSerie" => "Physiology. " "fecha" => "2008" "volumen" => "23" "paginaInicial" => "360" "paginaFinal" => "370" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19074743" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib26" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Neurogenic inflammation and asthma. Inflamm Allergy Drug Targets. 2007; 6:127-32." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Neurogenic inflammation and asthma." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Butler C" 1 => "Heaney L." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Inflamm Allergy Drug Targets. " "fecha" => "2007" "volumen" => "6" "paginaInicial" => "127" "paginaFinal" => "132" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17692036" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib27" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "TRP channels: emerging targets for respiratory disease. Pharmacol Ther. 2011; 130:371-84." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "TRP channels: emerging targets for respiratory disease." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Banner K" 1 => "Igney F" 2 => "Poll C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.pharmthera.2011.03.005" "Revista" => array:6 [ "tituloSerie" => "Pharmacol Ther. " "fecha" => "2011" "volumen" => "130" "paginaInicial" => "371" "paginaFinal" => "384" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21420429" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib28" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Neurogenic inflammation in airways. Int Arch Allergy Appl Immunol. 1991; 94:303-9." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Neurogenic inflammation in airways." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Barnes PJ." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Int Arch Allergy Appl Immunol. " "fecha" => "1991" "volumen" => "94" "paginaInicial" => "303" "paginaFinal" => "309" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1718892" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib29" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "The breathless adolescent asthmatic athlete. Eur Resp J. 2011; 38:713-20." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "The breathless adolescent asthmatic athlete." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Carlsen K-H." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Eur Resp J. " "fecha" => "2011" "volumen" => "38" "paginaInicial" => "713" "paginaFinal" => "720" ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib30" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:3 [ "referenciaCompleta" => "Exercise-induced respiratory symptoms in the elite athlete: evidence of a new syndrome. Allergy. 1998; 53(s43):60." "contribucion" => array:1 [ 0 => array:3 [ "titulo" => "Exercise-induced respiratory symptoms in the elite athlete: evidence of a new syndrome." "idioma" => "en" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Capão-Filipe M" 1 => "Delgado JL" 2 => "Rodrigues J" 3 => "Vaz-Azevedo M." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Allergy. " "fecha" => "1998" "volumen" => "53" "paginaInicial" => "60" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10096811" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/08732159/0000002100000001/v0_201604141151/X0873215915856126/v0_201604141151/en/main.assets" "Apartado" => array:4 [ "identificador" => "50823" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/08732159/0000002100000001/v0_201604141151/X0873215915856126/v0_201604141151/en/320v21n01a90385613pdf001.pdf?idApp=UINPBA00004E&text.app=https://journalpulmonology.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/X0873215915856126?idApp=UINPBA00004E" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 12 | 6 | 18 |
2024 October | 72 | 32 | 104 |
2024 September | 94 | 44 | 138 |
2024 August | 109 | 48 | 157 |
2024 July | 87 | 31 | 118 |
2024 June | 100 | 34 | 134 |
2024 May | 89 | 38 | 127 |
2024 April | 77 | 30 | 107 |
2024 March | 84 | 27 | 111 |
2024 February | 72 | 25 | 97 |
2024 January | 56 | 25 | 81 |
2023 December | 50 | 21 | 71 |
2023 November | 43 | 38 | 81 |
2023 October | 49 | 45 | 94 |
2023 September | 54 | 33 | 87 |
2023 August | 47 | 16 | 63 |
2023 July | 39 | 29 | 68 |
2023 June | 29 | 15 | 44 |
2023 May | 71 | 16 | 87 |
2023 April | 57 | 18 | 75 |
2023 March | 91 | 23 | 114 |
2023 February | 54 | 30 | 84 |
2023 January | 31 | 15 | 46 |
2022 December | 69 | 17 | 86 |
2022 November | 75 | 39 | 114 |
2022 October | 70 | 30 | 100 |
2022 September | 33 | 26 | 59 |
2022 August | 41 | 30 | 71 |
2022 July | 58 | 42 | 100 |
2022 June | 34 | 31 | 65 |
2022 May | 47 | 27 | 74 |
2022 April | 40 | 32 | 72 |
2022 March | 47 | 41 | 88 |
2022 February | 42 | 37 | 79 |
2022 January | 39 | 28 | 67 |
2021 December | 77 | 28 | 105 |
2021 November | 50 | 30 | 80 |
2021 October | 45 | 39 | 84 |
2021 September | 35 | 32 | 67 |
2021 August | 44 | 19 | 63 |
2021 July | 35 | 23 | 58 |
2021 June | 45 | 21 | 66 |
2021 May | 47 | 19 | 66 |
2021 April | 165 | 60 | 225 |
2021 March | 116 | 26 | 142 |
2021 February | 95 | 20 | 115 |
2021 January | 68 | 13 | 81 |
2020 December | 60 | 7 | 67 |
2020 November | 52 | 19 | 71 |
2020 October | 72 | 13 | 85 |
2020 September | 65 | 17 | 82 |
2020 August | 76 | 26 | 102 |
2020 July | 100 | 20 | 120 |
2020 June | 68 | 15 | 83 |
2020 May | 64 | 15 | 79 |
2020 April | 73 | 12 | 85 |
2020 March | 63 | 12 | 75 |
2020 February | 70 | 24 | 94 |
2020 January | 79 | 24 | 103 |
2019 December | 86 | 14 | 100 |
2019 November | 84 | 14 | 98 |
2019 October | 84 | 20 | 104 |
2019 September | 81 | 28 | 109 |
2019 August | 163 | 23 | 186 |
2019 July | 186 | 22 | 208 |
2019 June | 230 | 11 | 241 |
2019 May | 181 | 15 | 196 |
2019 April | 193 | 21 | 214 |
2019 March | 308 | 14 | 322 |
2019 February | 261 | 21 | 282 |
2019 January | 253 | 23 | 276 |
2018 December | 166 | 10 | 176 |
2018 November | 69 | 0 | 69 |
2018 October | 63 | 16 | 79 |
2018 September | 25 | 4 | 29 |
2018 August | 47 | 25 | 72 |
2018 July | 24 | 20 | 44 |
2018 June | 31 | 12 | 43 |
2018 May | 25 | 19 | 44 |
2018 April | 58 | 26 | 84 |
2018 March | 42 | 21 | 63 |
2018 February | 26 | 14 | 40 |
2018 January | 14 | 15 | 29 |
2017 December | 36 | 24 | 60 |
2017 November | 16 | 13 | 29 |
2017 October | 17 | 13 | 30 |
2017 September | 26 | 8 | 34 |
2017 August | 47 | 10 | 57 |
2017 July | 35 | 15 | 50 |
2017 June | 36 | 19 | 55 |
2017 May | 47 | 20 | 67 |
2017 April | 24 | 5 | 29 |
2017 March | 22 | 6 | 28 |
2017 February | 18 | 6 | 24 |
2017 January | 11 | 7 | 18 |
2016 December | 14 | 3 | 17 |
2016 November | 10 | 2 | 12 |
2016 October | 5 | 2 | 7 |
2016 September | 5 | 1 | 6 |
2016 August | 4 | 5 | 9 |
2016 July | 5 | 5 | 10 |
2016 June | 1 | 2 | 3 |
2016 May | 7 | 4 | 11 |
2016 April | 29 | 17 | 46 |
2016 March | 64 | 32 | 96 |
2016 February | 73 | 25 | 98 |
2016 January | 49 | 21 | 70 |
2015 December | 47 | 21 | 68 |
2015 November | 40 | 16 | 56 |
2015 October | 40 | 18 | 58 |
2015 September | 41 | 12 | 53 |
2015 August | 28 | 15 | 43 |
2015 July | 24 | 1 | 25 |
2015 June | 19 | 6 | 25 |
2015 May | 38 | 11 | 49 |
2015 April | 60 | 34 | 94 |
2015 March | 72 | 30 | 102 |
2015 February | 65 | 51 | 116 |