Journal Information
Share
Share
Download PDF
More article options
Visits
1147
Review
Full text access
Available online 25 February 2024
The role of MicroRNAs as early biomarkers of asbestos-related lung cancer: A systematic review and meta-analysis
Visits
1147
D. Mukhopadhyaya, P. Coccob, S. Orrùc,d, R. Cherchie, S. De Matteisf,g,
Corresponding author
sara.dematteis@unimi.it

Corresponding author at: Department of Health Sciences, University of Milan, Milan, Italy, NHLI, Imperial College London, United Kingdom.
a Molecular and Translational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Cagliari, Italy
b Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Oxford Road, Manchester, United Kingdom
c Operative Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Cagliari, Italy
d Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Cagliari, Italy
e Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
f Department of Health Sciences, University of Milan, Milan, Italy
g NHLI, Imperial College London, United Knigdom
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Figures (2)
Tables (4)
Table 1. Quality assessment of the included studies via Newcastle Ottawa Scale.
Table 2. Characteristics of the 27 studies included in the systematic review.
Table 3. MicroRNAs found associated with diagnosis and/or prognosis of asbestos-related LC and/or MPM in the studies included in the systematic review.
Table 4. Diagnostic and prognostic accuracy of the miRNAs significantly associated with increased lung cancer risk in the included studies.
Show moreShow less
Additional material (4)
Abstract
Background

Asbestos is still the leading cause of occupational cancer mortality worldwide. Asbestos-related lung cancer (LC) and malignant pleural mesothelioma (MPM) prognosis is still poor especially at advanced stage, so early diagnosis biomarkers are needed. MicroRNAs (miRNAs) have been proposed as potential early diagnostic biomarkers of asbestos-related LC and MPM.

Aim

To evaluate the role of miRNAs as diagnostic and prognostic biomarkers of asbestos-related LC and MPM by performing a literature systematic review and meta-analysis.

Methods

MEDLINE, EMBASE via Ovid, PUBMED and Cochrane library databases were systematically searched up to April 2023 to identify relevant articles. A grey literature search was also conducted using the Google Scholar platform. MeSH and free text terms for ‘asbestos’, ‘occupational exposure’, ‘lung cancer’, ‘mesothelioma’ and ‘miRNAs’ were used to search the literature. Our systematic review protocol was registered in the PROSPERO database. Study quality was assessed via the Newcastle-Ottawa Scale.

Results

From the search, 331 articles were retrieved, and, after applying our selection criteria, and exclusion of one study for poor quality, 27 studies were included in the review. Most of the studies were hospital-based case-control, conducted in Europe, and evaluated MPM among men only. MiRNAs expression was measured mainly in plasma or serum. MiR-126, miR-132–3p, and miR-103a-3p were the most promising diagnostic biomarkers for MPM, and we estimated a pooled area under the curve (AUC) of 85 %, 73 %, and 50 %, respectively. In relation to MPM prognosis, miR-197‑3p resulted associated with increased survival time. MiR-126, alone and combined with miR-222, was confirmed associated also to LC diagnosis, together with miR-1254 and miR-574–5p; no miRNA was found associated to LC prognosis.

Conclusion

Based on our systematic literature review there is suggestive evidence that the expression of specific miRNAs in the blood serum or plasma are associated with asbestos-related LC and MPM diagnosis and prognosis. Further large longitudinal studies are urgently needed to validate these findings and elucidate the underlying mechanisms given the potential important implications for patients’ survival.

Keywords:
miRNA
Asbestos
Lung cancer
Mesothelioma
Occupational health
Biomarkers
Full Text
Introduction

Globally, it has been estimated that asbestos is still the leading cause of morbidity, disability, and mortality for occupational cancer accounting for 4120 (3060–5240) thousand DALYs (Disability-Adjusted Life Years) and 236 (176–296) thousand deaths. In relation to the specific cancer type, lung cancer (LC) is the most frequent, with 199 (140–257) thousand deaths, and malignant pleural mesothelioma (MPM) is the rarest, with 26.8 (24.3–28.6) thousand deaths, but it is virtually only caused by asbestos.1 The International Agency for Research on Cancer (IARC) has classified asbestos as a known human carcinogen not only for LC and MPM, but also for all mesothelioma types, larynx, and ovarian cancer, and, with weaker evidence, for throat, stomach, and colorectum malignancies.2 Moreover, chronic degenerative pleural and interstitial lung diseases, such as asbestosis are caused by asbestos exposure,3 so increasing the associated global morbidity and mortality burden.4 Of note, asbestos exposure is not only occupational, but it may occur in the home, and in surroundings of contaminated worksites with potential exposure of the most vulnerable, such as children and pregnant women.5,6 Regrettably, only 69 of the world's 195 countries have banned asbestos.7 The World Health Organization (WHO) estimated that 125 million people worldwide are still exposed to asbestos, and considering the long cancer latency (up to 60 years for MPM) the expected associated cancer burden won't decrease in the near future.8 Despite important advances in cancer therapy, both LC and MPM have poor prognosis, especially if diagnosed at a late stage. In addition, there is no agreed standard treatment for MPM whose median survival is less than one year from diagnosis.9 Cancer screening programs among ex-exposed to asbestos using low-dose chest CT-scans have been proposed,10 but so far none has started yet due to uncertain cost-benefits and challenges in risk stratification to identify which subgroup of subjects would benefit the most. Therefore, non-invasive biomarkers for risk stratification, and earlier cancer detection are urgently needed to improve overall survival and quality of life, as was recently recommended by the European MPM guidelines.11 MicroRNAs (miRNAs) are short, endogenous, non-coding ribonucleic acids that have been suggested as potential candidates. MiRNAs regulate key processes in cells and signaling pathways involved in lung tumorigenesis, such as cell proliferation, differentiation, angiogenesis, apoptosis, invasion, and metastasis by regulating gene expression at the post-transcriptional level,12 and are potential molecular targets for cancer therapies. Also, the availability of miRNAs in several accessible biological fluids and exhaled breath condensate (EBC) make them ideal candidates for liquid biopsies. Changes in miRNAs expression have been associated with diagnosis and prognosis of several chronic diseases and cancers,13 but the evidence for asbestos-related LC and MPM is still scarce and inconsistent. Therefore, the aim of our systematic literature review is to evaluate the role of miRNAs as diagnostic and prognostic biomarkers of asbestos-related LC and MPM.

Methods

We performed the systematic review according to the Cochrane Handbook for Systematic Reviews14 and the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines.15 MeSH and free text terms for ‘asbestos’, ‘occupational exposure’, ‘lung cancer’, ‘mesothelioma’ and ‘miRNAs’ were used to search the literature in electronic databases: Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica Database (EMBASE) via Ovid platform, PubMed, and Cochrane Library (search period: January 1990 to April 2023) (see detailed search strategy in supplementary Table 1s). A grey literature search was conducted using the Google search engine platform to identify relevant studies not captured through database searches. Our systematic review protocol is registered in the PROSPERO database (registration Number: CRD42023414412 accessible at crd.york.ac.uk/prospero/display_record.php?ID=CRD42023414412). The studies retrieved from our electronic search were reviewed following the Population (P), Interventions (I), Comparators (C), Outcomes (O), Study Design (S), and Time Frame (T) model and screened for suitability according to our inclusion criteria (see PICOS-T criteria in supplementary Table 2s) by two reviewers independently (DM and SDM). A third reviewer was available in case of any disagreement (PC). Relevant data from each included study were extracted into an ad hoc Microsoft Excel (Microsoft Corp., Redmond, WA) table. Each study was appraised for quality using the Newcastle-Ottawa Scale (NOS) for observational studies.15 Studies of very poor quality were not included. For the miRNAs reported at least by two similar studies in association with diagnosis and/or prognosis of asbestos-related LC and/or MPM, a meta-analysis was performed to estimate a pooled quantitative diagnostic and/or prognostic accuracy using the AUC (Area Under the Curve) and its 95 % Confidence Intervals (CIs). We extracted the AUCs and their standard errors (s.e.) from the studies. We displayed graphically in a forest plot the pooled AUCs and their asymptotic intervals (AUC +/- 1.96*s.e.) on a non-transformed scale. Random effect methods16 were applied in case of high heterogeneity (I2>50 %). A potential small study effect bias was evaluated using Egger test and visualised using a funnel plot. The STATA v.17 (Stata Corp LP, College Station, TX) software was used for all analyses.

Results

The literature search retrieved a total of 331 citations. After duplicate removal and application of our selection criteria, 28 articles were included in the review. The quality of the included studies was scored between fair (n = 14), and high (n = 13); only one study17 was removed due to poor quality (see the New-Castle Ottawa quality of studies assessment scale in Table 1). Among the 27 studies included in the final review, only seven were selected as suitable for the meta-analysis (see PRISMA flow chart14 in Fig. 1). The characteristics of the 27 included studies are summarized in Table 2. Most studies were conducted in Europe, specifically in Italy (n = 13).18-30 Regarding the study design, all studies were hospital-based case-controls, but one study31 was a hospital-based retrospective cohort study. Most studies (n = 18) had low sample size. MiRNAs expression was evaluated mostly in blood serum or plasma19,20,22,26-30,32-37 and serum or plasma extracellular vesicles (EV).18,23,38,39 Some studies evaluated miRNA expression directly in the lung tumour tissue,23-25,31,40-42 and one in the EBC.21 The most frequently evaluated disease outcome was MPM, followed by non-small cell lung cancer (NSCLC)22,29,30 and lung adenocarcinoma.21,33 In most studies (n = 15), asbestos-exposed cancer-free hospital patients were used as controls. All but two studies19,26 were only among men. The age range was 52 – 73 years for MPM cases, 61 – 69 for LC cases, 58 – 74 years for non-asbestos-exposed controls and 55 – 76 for asbestos-exposed controls. Ten studies18-20,22,23,27,29,33,36,37 reported the asbestos exposure assessment method, either via personal interview or self-administered questionnaire and six studies20,22,27,36,41,43 calculated the asbestos exposure duration in years. The most frequent type of asbestos exposure was occupational. The majority of studies reported smoking status and some studies19,20,22-25,29,30,32-40 managed to include never smokers only; however seven studies18,26,28,31,41,42,44 did not report the smoking status. All included studies reported miRNAs diagnostic accuracy, and two studies reported the prognostic accuracy19,31 (Table 3). The miRNAs most frequently reported in association with MPM diagnosis were miR-126,22,25,27,29,40 miR-103a-3p,20,36-38 and miR-132–3p.35,37 Of note, miR-126 was confirmed alone,29 and combined with miR-222 22 also for LC diagnosis. Other miRNAs resulted associated with LC, but only by single studies, were miR-1254 and miR-574–5p,30 and let-7f-5p, miR-518f-3p, miR-597–5p, miR-1260a.21 In relation to types of miRNAs perturbations, several miRNAs associated with MPM diagnosis resulted up-regulated,18,19,22,26,30,32-34,41,42 others down-regulated.20,23-25,27,29,31,35-37,39 For LC, all miRNAs resulted up-regulated,21,30 but let-7f-5p.21 Most studies (n = 16) 18,20-24,26,31-33,37,40-44 estimated miRNA expression difference between cases and controls as fold change (FC) using different cut-off thresholds. Some studies managed to adjust tests’ p-values for multiple testing for MPM diagnosis 18,19,23,30,31,40,41,44 and LC diagnosis.21 Eight studies.19,25,32,35-37,39,43 matched cases and controls by potential confounders (e.g. age, sex, smoking status, or asbestos exposure) while nine studies 18,20-24,27,31,40 controlled for them in the statistical analysis. Ten studies 20,21,25,28,30,32-34,40,41 reported also cancer stages and the most frequent was stage I. Twenty-two studies 19-25,27,28,30,31,33-38,40-44 reported the histological subtypes; the most frequent type for asbestos-related LC was adenocarcinoma and for MPM was epithelioid. In relation to diagnostic accuracy (Table 4), the miRNAs with the highest values for MPM were: miR-103a-3p 38 with 86 % sensitivity, 63 % specificity and AUC of 0.76; miR-126 29 with 80 % sensitivity, 60 % specificity and AUC of 0.75(0.62–0.89) and miR-132–3p 35 with 86 % sensitivity, 61 % specificity and AUC of 0.91(0.8–1.0). In relation to MPM prognosis, miR-197‑3p 19 was associated with an increased survival for epithelioid type of 13.5 (±0.6) months, for sarcomatoid of 7.9 (±0.7) months, and for biphasic of 12.4 (±0.6) months. Also, six miRNAs combined (miR-21–5p, miR-23a-3p, miR-30e-5p, miR-221–3p, miR-222–3p, miR-31–5p) 31 resulted associated to 57.2 (45.83–90.48) months to 6.4 (1.94–8.28) months increased survival. In relation to asbestos-related LC diagnosis, miR-126 was confirmed associated also to LC diagnosis, alone,29 and in combination with miR-222.22 Also, miR-1254 and miR-574–5p30 were found associated with early-stage NSCLC even months before clinical diagnosis. No miRNAs were reported in association to survival for asbestos-related LC.

Table 1.

Quality assessment of the included studies via Newcastle Ottawa Scale.

New Castle Ottawa Scale Assessment for the Case Control Studies (n = 26)
References  Q1: Is the case definition adequate?  Q2: Representativeness of the cases  Q3: Selection of Controls  Q4: Definition of Controls  Q5: Comparability of cases and controls on the basis of the design or analysis  Q6: Ascertainment of exposure  Q7: Same method of ascertainment for cases and controls  Q8: Non-Response Rate  Overall Score  Study Quality 
Casalone 2022 18  High 
Mauro 2023 19  High 
Jiménez-Ramírez 2022 36  High 
Ferrari 2022 20  High 
Faversani 2021 21  High 
Weber 2019 37  High 
Matboli 2018 17  Poor 
Matboli 2018 32  Fair 
Santarelli 2019 22  Fair 
Cavalleri 2017 23  High 
Mozzoni 2017 25  Fair 
Weber 2017 35  High 
Truini 2017 24  Fair 
Bononi 2016 26  Fair 
Ak 2015 41  Fair 
Santarelli 2015 27  High 
Lamberti 2015 28  Fair 
Andersen 2014 40  Fair 
Weber 2014 38  High 
Gayosso-Gómez 2014 33  High 
Xu 2013 44  Fair 
Muraoka 2013 34  High 
Kirschner 2012 42  Fair 
Weber 2012 39  High 
Tomasetti 2012 29  Fair 
Foss 2011 30  Fair 
Nymark 2011 43  Fair 
New Castle Ottawa Scale Assessment for the Cohort Study (n = 01)
Reference  Q1: Representativeness of the exposed cohort  Q2: Selection of the non-exposed cohort  Q3: Ascertainment of exposure  Q4: Demonstration that outcome of interest was not present at start of study  Q5: Comparability of cohorts on the basis of the design or analysis controlled for confounders  Q6: Assessment of outcome  Q7: Was follow-up long enough for outcomes to occur  Q8: Adequacy of follow-up of cohorts  Overall Score  Study Quality 
Kirschner 2015 31  Fair 
Fig. 1.

PRISMA flow diagram showing screening and selection of articles related to miRNAs and asbestos-related lung cancer outcomes resulting from the search in electronic bibliographic databases.

(0.65MB).
Table 2.

Characteristics of the 27 studies included in the systematic review.

Author, Year  Country  Study Design  Sample Size  Sex [n(%)]  Age [Mean(±SD)]  Smoking Status [n(%)]  Asbestos Exposure Assessment  Asbestos Exposure Duration  Asbestos Exposure types [n(%)]  miRNA Matrix  Outcome 
Casalone 202218  Denmark, France, Germany, Greece, Italy, The Netherlands, Norway, Spain, Sweden, and The United Kingdom  Population based case-control  N: 164CA: 82CO_Non_Asb-Exp: 82  M; CA: 59(72) CO_Non_Asb-Exp: 59 (72)F; CA: 23(28) CO_Non_Asb-Exp: 23(28)  CA: 57.7(±8.1)CO_Non_Asb-Exp: 57.8(±8.1)  NR  Questionnaire administered via personal interview  NR  CA;Unexposed: 18(22)Exposed: 40(48.7)NA: 24(29.7)CO_Non_Asb-Exp,Unexposed: 18(22)Exposed: 40(48.7)NA: 24(29.7)  Serum EV  MPM 
Mauro 202319  Italy  Hospital based case-control  N: 225CA: 75CO_Asb-Exp: 75CO_Non_Asb-Exp: 75  N/A  CA: 69.3(±0.85)CO_Asb-Exp: 66.3(±0.78)CO_Non_Asb-Exp: 69.8(±0.92)  CA;S: 8(10.6)Ex: 13(17.3)NS:14(18.7)N/A: 40(53.3)  Questionnaire administered via personal interview  NR  Occupational; Documented:17(22.7),Possible:6(6.7)Domestic/Environmental:14(18.7)No:2(2.7)NA: 37(49.3)  Blood serum  MPM 
Ferrari 202220  Italy  Hospital based case-control  N: 80CA: 26CO_Asb-Exp: 54  CA; M: 20(77) F: 06(23)CO_Asb-Exp; M: 47(87) F: 07(13)  CA: 71.3(±7.8)CO_Asb-Exp: 64.8(±6.0)  CA;NS: 8(31)Ex: 15(58)S: 3(12)CO_Asb-Exp; NS: 25(46)Ex: 24(44)S: 5(9)  Questionnaire administered via personal interview  CA: 25[min: 1, Q1: 17, Q3: 32, max: 47]CO_Asb-Exp: 11[min: 0, Q1: 6, Q3: 25, max: 40]  CA;Occupational: 14(53.8)Environmental: 1(3.8)Unknown: 11(42.3)CO_Asb-Exp;Occupational: 54(100)  Plasma  MPM 
Jiménez-Ramírez 202236  Mexico  Hospital based case control  N: 326CA: 108CO_Asb-Exp: 218  CA; M: 90(33.5) F: 18(31.6)CO_Asb-Exp; M:179(66.5) F: 39(68.4)  Total sample; CA: 62[55–71] CO_Asb-Exp: 62[55 – 71]≤60 years; CA: 48(44.4) CO_Asb-Exp: 96(44.0)>60 years; CA: 60(55.6) CO_Asb-Exp: 122(56.0)  NS; CA: 39(36.1) CO_Asb-Exp: 89(40.8)S; CA: 69(63.9) CO_Asb-Exp: 129(59.2)  Self-administered questionnaire  Years of occupational exposure; CA: 11.5[2–28] CO_Asb-Exp: 17.5[5–27.5]Years of environmental exposure;CA: 30[18–42] CO: 35[20–46]  Asbestos; Yes, CA: 104(96.3)CO_Asb-Exp: 199(91.3)No, CA: 4(3.7)CO_Asb-Exp: 19(8.7)Occupational; Yes,CA: 82(75.9) CO_Asb-Exp: 128(58.7)No, CA: 26(24.1) CO_Asb-Exp: 90(41.3)Environmental; Yes, CA: 77(71.3) CO_Asb-Exp: 145(66.5)No, CA: 31(28.7) CO_Asb-Exp: 73(33.5)  Plasma  MPM 
Faversani 202121  Italy  Hospital based case-control  N: 51CA_MPM: 23CO: 09CA_Lung-Ad: 14  CA_MPM; M: 23 F: N/ACO; M: 09, F: N/ACA_Lung-Ad; M: 14, F: N/A  CA_Lung-Ad: 69 (±7)CO: 67 (±7)CA_MPM: NR[55–90]  CA_Lung-Ad;Ex: 10 (71)S: 2 (14.3)NA: 2 (14.3)CO;Ex: 6 (66.7)Yes: 3 (33.3)NA: 0 (0)  NR  NR  NR  EBC and Plasma  MPM, Lung-Ad 
Weber 201937  Germany  Hospital based case-control  N: 51CA: 17CO: 34  CA: 17(100)CO: 34(100)  CA: 73[64 – 83]CO: 74[63 - 84]  CA;S: 1Ex: 13NS: 3CO;S: 4Ex: 21NS: 9  Self-administered questionnaire  NR  Occupational: NR(100 %)  Plasma  MPM 
Matboli 201832  Egypt  Hospital based case-control  N: 100CA: 60CO_Asb-Exp: 20CO_Non_Asb-Exp: 20  MPM; M: 35(58.3)F: 25(41.7)CO_Asb-Exp; M: 12(60)F: 8(40)CO_Non_Asb-Exp; M: 12(60) F: 8(40)  CA; ≥55 years: 33 (55) <55 years: 27(45)CO_Asb-Exp; ≥55 years: 11(55)<55 years: 9(45)CO_Non_Asb-Exp; ≥55 years: 10(50)<55 years: 10(50)  CA; S: 24 (40)NS: 27 (45) Ex: 8 (13.3) PS: 1 (1.7)CO_Asb-Exp;S: 5 (25)NS: 14 (70) PS: 1 (5)CO_Non_Asb-Exp;S: 6 (30)NS: 13 (65) PS: 1 (5)  NR  NR  CA; +ve exp: 45(76.3)-ve exp: 14(23.7)CO_Asb-Exp;+ve exp: 20 (100)CO_Non_Asb-Exp; -ve exp: 20(100)  Blood serum  MPM 
Santarelli 201922  Italy  Hospital based case-control  N: 397CA_NSCLC-Asb: 105CA_NSCLC: 60CO_Asb-Exp: 80CA_MPM: 74CO: 78  Discovery;CA_NSCLC; M: NR (100)F: 0(0)CA_NSCLC-Asb; M: NR (100)F: 0(0)CA_MPM; M: NR(100)F: 0(0)Serum Training;CO; M: NR(79) F: NR(21)CA_NSCLC; M: NR(60) F: NR(40)CA_NSCLC-Asb; M: NR(80) F: NR(20)CA_MPM; M: NR(83)F: NR(17)  Discovery;CA_NSCLC: 65±7CA_NSCLC-Asb: 69±11CA_MPM: 72±8Serum Training;CO: 56±17CA_NSCLC: 71±10CA_NSCLC-Asb: 74±9CA_MPM: 71±7  Discovery;CA_NSCLC; NS: NR (25) S: NR (75)CA_NSCLC-Asb; NS: NR (25)S: NR (75)CA; NS: NR (25)Yes: NR (75)Serum Training;CO; NS: NR (42)S: NR (26)Ex: NR (32)CA_NSCLC; NS: NR (29)S: NR (26)Ex: NR (45)CA_NSCLC-Asb; NS: NR (20)S: NR (35), Ex: NR (45)CA_MPM; NS: NR (38)S: NR (12)Ex: NR (50)  Self-administered questionnaire  Discovery set: NRSerum Training;CA_NSCLC-Asb: 6.4(±3.7)CA_MPM: 4.2(±3.3)  Discovery;CA_NSCLC; Not exposed: NR (100)CA_NSCLC-Asb; Occupational: NR (100)CA_MPM; Occupational: NR (100)Serum Training;CO; Not exposed: NR (100)CA_NSCLC; Not exposed: NR (100)CA_NSCLC-Asb; Occupational: NR (45), Environmental: NR (55)CA_MPM; Occupational: NR (59) Environmental: NR (41)  Blood serum  NSCLC, MPM 
Cavalleri 201723  Italy  Hospital based case-control  N: 42CA: 23CO_Asb-Exp: 19  CA; M: 17(73.9)F: 6(26.1)CO_Asb-Exp; M: 15 (78.9)F: 4(21.1)  CA: 70.2(±7.8)CO_Asb-Exp: 66.5(±6.4)  CA; S: 5(21.8)Ex: 12(52.1)NS: 6(26.1)CO_Asb-Exp; S: 3(15.8)Ex: 7(36.8)NS: 9(47.4)  Questionnaire administered via personal interview  NR  CA; Definite Occupational: 12(52.3)Possible Occupational: 2(4.3)Environmental: 2(4.3)NA: 7(30.4)CO_Asb-Exp; Definite Occupational: 19(100)  Plasmatic EV  MPM 
Mozzoni 201725  Italy  Hospital based case-control  N: 61CA: 32CO_Asb-Exp: 14CO_Non_Asb-Exp: 15  CA; M: 24(NR)F: 3(NR)CO_Non_Asb-Exp; M: 12(NR)F: 3(NR)CO_Asb-Exp; M: 8(NR) F: 6(NR)  CA: 72.3(±15.6)CO_Asb-Exp: 75.9(±9.9)CO_Non_Asb-Exp:69.9(±7.0)  CA; NS: 12(NR)S: 20(NR)Ex: 00(NR)CO_Asb-Exp; NS: 8(NR)S: 4(NR)Ex: 2(NR)CO_Non_Asb-Exp; NS: 5(NR)S: 7(NR) Ex: 3(NR)  NR  NR  NR  Plasma and FFPE tissue samples  MPM 
Weber 201735  Germany  Hospital based case-control  N: 66CA: 22CO_Asb-Exp: 44  Discovery;CA; M: 21F: N/ACO_Asb-Exp; M: 21F: N/A  Discovery;CA: 72[35–85]CO_Asb-Exp: 72[43–82]  Discovery;CA; S: 12(NR)NS: 9(NR)CO_Asb-Exp; S: 12(NR)NS: 9(NR)  NR  NR  NR  Plasma  MPM 
Truini 201724  Italy  Hospital based case-control  N: 57TS: 27VS: 30  TS; M: 22(81) F: 5(19)VS; M: 25 (83) F: 5(17)  TS: 67.9(±6.5)VS: 69.5(±8.5)  TS; S: 18(67)NS: 9(33)Unknown: 0(0)VS; S: 19(63)NS: 9(30)NA: 2(7)  NR  NR  TS; Yes: 22(81)NA: 5(19)VS; Yes: 20(67)NA: 10(33)  FFPE biopsy tumourtissue  MPM 
Bononi 201626  Italy  Hospital based case-control  N: 30CA: 10CO_Asb-Exp: 10CO_Non_Asb-Exp: 10  NR  CA: 64[NR]CO_Asb-Exp: 64[NR]CO_Non_Asb-Exp: 64[NR]  NR  NR  NR  NR  Blood serum  MPM 
Ak 201541  Turkey  Hospital based case-control  N: 24CA: 18CO_B_Asb-Exp: 06  MPM; M: 09F: 09CO_B_Asb-Exp; M: 5F: 01  CA: 68.0(±7.5), NR [48–81]CO_B_Asb-Exp: 65.7(±12.3), NR [49–79]  NR  NR  CA: 33.1(±19.6), NR [0–81]CO_B_Asb-Exp: 28.2(±11.3), NR [20–49]  NR  Fresh frozen tissues  MPM 
Santarelli 201527  Italy  Hospital based case-control  N: 188CA: 45CO_Asb-Exp: 99CO_Non_Asb-Exp: 44  CA; M: 40(89)F: 5(11)CO_Asb-Exp; M: 90(91)F: 9(9)CO_Non_Asb-Exp; M: NR (80)F: NR (20)  CA: 69 (±8)CO_Asb-Exp: 64(±10)CO_Non_Asb-Exp: 68(±6)  CA; S or Ex, No: 14(31)Yes: 31(69)CO_Asb-Exp; S or Ex, No: 39(39) Yes: 61(61)CO_Non_Asb-Exp; S or Ex, No: NR (41) Yes: NR(59)  Self-administered questionnaire  CA: 25(±12)CO_Asb-Exp: 28(±11)  NR  Blood serum  MPM 
Kirschner 201531  Australia  Hospital based retrospective cohort study  N: 176EPP: 85P/D: 75LS: 08SS: 08  EPP; M: 68(80)F: 17(20)P/D; M: 59(79)F: 16 (21)LS; M: 6(NR)F: 2(NR)SS; M: 6(NR)F: 2(NR)  EPP: 58[22–74]P/D: 66[42–83]LS: 51.5[37–64]SS: 62[47 – 70]  NR  NR  NR  NR  FFPE tumor specimens  MPM 
Lamberti 201528  Italy  Hospital based case-control  N: 24CA: 14CO_Non_Asb-Exp: 10  CA; M: 13F: 01CO_Non_Asb-Exp; M: 09 F: 01  CA: 70.3(±4.6)CO_Non_Asb-Exp: 68.2(±5)  NR  NR  NR  NR  Blood serum  MPM 
Andersen 201440  Denmark  Hospital based case-control  N: 71CA: 40CO; CO_DB: 12 CO_NNP: 14CO_PTHX: 5  CA; M: 32(80)F: 8(20)CO; CO_DB, M: 9(75), F: 3(25)CO_NNP, M: 11(79), F: 3(21)CO_PTHX, M: 5(100), F: 00(00)  CA: 64[40–77]CO; DB: 58.5[43–70]NNP: 65.5[44–72]PTHX: 34[20–38]  CA; S: 26(65)NS: 14(35)CO; DB, S: 8(67), NS: 4(33) NNP, S: 10(71), NS: 4(29)PTHX; S: 1(20), NS: 4(80)  NR  NR  NR  FFPE tumor specimens  MPM 
Weber 201438  Germany  Hospital based case-control  N: 95CA: 43CO_Asb-Exp: 52  CA; M: 43F: N/ACO_Asb-Exp; M: 52F: N/A  CA: 72[35–85]CO_Asb-Exp: 73[43–85]  CA; S: 21(NR)NS: 20(NR)CO_Asb-Exp; S: 34(NR)NS: 18(NR)  NR  NR  NR  Blood - cellular blood fraction  MPM 
Gayosso-Gómez 201433  Mexico  Hospital based case-control  N: 92CA_MPM: 11CO_Non_Asb-Exp_1: 23CO_Non_Asb-Exp_2: 22CA _Lung-Ad_1: 15CA _Lung-Ad_2: 21  CA_MPM; M: 10(NR)F: 1(NR)CA _Lung-Ad_1; M: 04(NR)F: 11(NR) CA _Lung-Ad_2; M: 13(NR)F: 8(NR)CO_Non_Asb-Exp_1; M: 23(NR)F: 00(00)CO_Non_Asb-Exp_2; M: 00(00)F: 22(NR)  CA_MPM: 65.8(±13.4)CA _Lung-Ad_1: 61.7(±11.4) CA _Lung-Ad_2: 60.9(±15.4)CO_Non_Asb-Exp_1: 47.25(±5.8) CO_Non_Asb-Exp_2: 57.0 (±10.0)  CA_MPM; S: 09(NR)NS: 02(NR)CA _Lung-Ad_1; NS: 15(NR) CA _Lung-Ad_2; S: 21(NR)CO_Non_Asb-Exp_1; S: 23(NR)CO_Non_Asb-Exp_2; S: 22(NR)  Questionnaire administered via personal interview  NR  NR  Blood serum  MPM, Lung-Ad 
Xu 201344  USA  Hospital based case-control  N: 31CA: 25CO_Non_Asb-Exp: 06  CA; M: 14(NR)F: 11(NR)CO_Non_Asb-Exp; M: 04(NR)F: 02(NR)  CA: NR [35–70]CO_Non_Asb-Exp: NR [58–71]  NR  NR  NR  NR  Tumor samples specimens and Normal parietal pleura  MPM 
Muraoka 201334  Japan  Hospital based case-control  N: 110CA: 48CO_B_Asb-Exp: 21CO_Non_Asb-Exp: 41  CA; M: 45(94)F: 3(6)CO_B_Asb-Exp; M: 15(71)F: 6(29)CO_Non_Asb-Exp; M: 23(56)F: 18(44)  Overall: 69[38–91]CA; <69 years: 28(58) ≥69 years: 20(42)CO_B_Asb-Exp; <69 years: 4(20)≥69 years: 17 (80)CO_Non_Asb-Exp; <69 years: 23(56) ≥69 years: 18(44)  CA; NS: 14(29)S: 34(71)CO_B_Asb-Exp; NS: 9(43)S: 12(57)CO_Non_Asb-Exp; NS: 23(56)S: 18(44)  NR  NR  NR  Serum  MPM 
Kirschner 201242  Australia  Hospital based case-control  N: 94Plasma or serum;CA: 15CO_Non_Asb-Exp: 14Tissue;CA: 18CO_Non_Asb-Exp: 7  Plasma or SerumCA; M: 13(NR)F: 02(NR)CO_Non_Asb-Exp; M: 09(NR)F: 05(NR)TissueCA; M: 14(NR)F: 04(NR)CO_Non_Asb-Exp; M: 05(NR)F: 02(NR)  Plasma or SerumCA: 68[51 – 83]CO_Non_Asb-Exp: 58.5[21–78]Tissue SamplesCA: 55[37 – 66]CO_Non_Asb-Exp: 68[57 – 76]  NR  NR  NR  NR  Plasma or serum and ling tissue  MPM 
Weber 201239  Germany  Hospital based case-control  N: 65CA: 23CO_Asb-Exp: 17CO_Non_Asb-Exp: 25  CA; M: 18(NR) F: 5(NR)CO_Asb-Exp; M: 16(NR) F: 01(NR)CO_Non_Asb-Exp; M: 18(NR) F: 7(NR)  CA: 66[34–84]CO_Asb-Exp: 68[47–80]CO_Non_Asb-Exp: 70[56–84]  CA; Ex: 10(NR)NS: 12(NR)NA: 01(NR)CO_Asb-Exp; S: 06(NR)Ex: 05(NR)NS: 06(NR)CO_Non_Asb-Exp; S: 05(NR)Ex: 15(NR)NS: 05(NR)  NR  NR  NR  Cellular fraction of human peripheral blood  MPM 
Tomasetti 201229  Italy  Hospital based case-control  N: 121CA_MPM: 45CA_NSCLC: 20CO_Non_Asb-Exp: 56  CA_MPM; M: 31(NR)F: 14(NR)CA_NSCLC; M: 15(NR)F: 5(NR)CO_Non_Asb-Exp; M: 34(NR)F: 22(NR)  CA_MPM: 67.7(± 8.9)CA_NSCLC: 69.6(±8.1)CO_Non_Asb-Exp: 66.0(±6.8)  CA_MPM; S: 21 (47)Ex: 9(20) NS: 15(33)CA_NSCLC; S: 5(25)Ex: 6(30)NS: 9 (45)CO_Non_Asb-Exp; S: 27(48)Ex: 8(14) NS: 21(38)  Self-administered questionnaire  NR  NR  Blood serum  MPM, NSCLC 
Foss 201130  Italy  Hospital based case-control  N: 78CA: 03CA_NSCLC: 33CO_Non_Asb-Exp: 42  Discovery,CO; M: 11F: 00CA_NSCLC; M: 10 F: 01  Discovery,CO: 64[60–74]CA_NSCLC: 65[50–72]  Discovery CohortCO; NS: 1(NR)S: 5(NR)Ex: 5(NR)CA_NSCLC; S: 6(NR)Ex: 5(NR)  NR  NR  NR  Blood serum  NSCLC, MPM 
Nymark 201143  Finland  Hospital based case-control  N: 34CA: 13CO_Asb-Exp: 13CO_Non_Asb-Exp: 8  CA; M: 13F: 00CO_Asb-Exp; M: 13F: 00CO_Non_Asb-Exp; M: 08F: 00  CA: 62.5(NR)CO_Asb-Exp: 62.6(NR)CO_Non_Asb-Exp: NR  CA; S: NR(38)Ex: NR(62)CO_Asb-Exp; S: NR(54)Ex: NR(46)CO_Non_Asb-Exp; S: NR(57)Ex: NR(43)  NR  CA: 33.4(NR)CO_Asb-Exp: 0.04(NR)CO_Non_Asb-Exp: 0.7(NR)  NR  FFPE biopsy tumourtissue  MPM 

Abbreviations: CA: cases, CO_Non_Asb-Exp: controls non-exposed to asbestos, MPM: malignant pleural mesothelioma, CO_Asb-Exp: controls exposed to asbestos, exp: exposure, +ve exp: positive exposure, -ve exp: negative exposure, EV: extracellular vesicles, Lung-Ad: lung adenocarcinoma, N: total sample size, SD: Standard deviation, M: male, F: female, S: smoker, NS: non-smoker, Ex: former smoker, NA: data not available, N/A: not applicable, EBC: exhaled breathe condensate, NR: data not reported, NSCLC: non-small cell lung cancer, NSCLC_Asb: Asbestos exposed non-small cell lung cancer, TS: training set, VS: validation set, FFPE: formalin-fixed paraffin embedded, EPP: extra pleural pneumonectomy, P/D: pleurectomy ± decortication, LS: long survivor, SS: short survivor, NNP: patient-matched non-neoplastic pleura, PTHX: non neoplastic reactive mesothelial proliferation due to pneumothorax, BAsb-Exp: Benign pleural asbestosis, Y: years.

Table 3.

MicroRNAs found associated with diagnosis and/or prognosis of asbestos-related LC and/or MPM in the studies included in the systematic review.

Author, Year  Matrix of miRNA  miRNAs  miRNA Expression change  Statistical model and adjustment for confounders  Effect estimates (95 % CI) of miRNAs expression change  miRNAs expression changes in Fold change (FC)  Adjustment for multiple tests  Cancer type  Cancer Histology  Cancer Stage 
Casalone 202218Serum Extracellular VesiclesmiR-11,400  ↑  Multivariable logistic regression model adjusted for age, batch effect, country and asbestos exposureNRmiR-11,400: 1.4 (0.69–2.0)miR-148a-3p: 0.6 (0.2–0.82)miR-409–3p: 0.7 (0.02–1.3)miR-11,400: 0.01 (FDR - adjusted p value)MPMNRNR
miR-148a-3pmiR-409–3p  ↓ 
Mauro 202319  Blood serum  miR-197‑3p  ↑  ANOVA testmatching by age  NR  NR  CA vs. CO_Asb-Exp: 0.0036CO_Asb-Exp vs. CO_Non_Asb-Exp: 0.0001(Tukey test – adjusted p value)  MPM  Epithelioid: 27 (36.0)Sarcomatoid: 20 (26.7)Biphasic: 28 (37.3)  NR 
Jiménez-Ramírez 202236  Plasma  miR-103a-3p  ↓  Mann-Whitney U, Chi-squared or Fisher's exact testMatching by sex and age  NR  NR  NR  MPM  Epithelioid: 102(94.4)Biphasic: 2(1.9)Sarcomatoid: 4 (3.7)  NR 
Ferrari 202220  Plasma samples  miR-103a-3p miR-30e-3p  ↓  Multivariable logistic regression model adjusted for sex, age, BMI, and smoking  OR;miR-103a-3p: 0.99996(0.99970–1.000)miR-30e-3p: 1.00004(0.99950–1.001)  miR-103a-3p: 0.57miR-30e-3p: 0.76  NR  MPM  Epithelioid: 14(54)Biphasic: 10(38)Sarcomatoid: 2(8)  Stage I: 8(31)Stage II: 6(23)Stage III: 7 (27)Stage IV: 5 (19) 
Faversani 202121Blood plasmamiR-597–5pmiR-1260a  ↑  Multivariable logistic regression model adjusted for age, BMI and smoking habitsOR;miR-597–5p: 0.852miR-1260a: 1.615miR-130b-3p: 0.410miR-302b-3p: 2.849miR-518f-3p: 1.030let-7f-5p: 0.301miR-345–5p: 0.406miR-362–5p: 0.390miR-1260a: 1.615Blood plasma;miR-597–5p: 2.4miR-1260a: 9.9Let-7f-5p: 0.39miR-1260a: 21.5miR-130b-3p: 0.98miR-302b-3p: 0.06miR-345–5p: 2.68miR-362–5p: 2.04miR-518f-3p: 4.0miR-597–5p: 2.57let-7f-5p: 0.399miR-1260a: 0.999miR-130b-3p: 0.999miR-302b-3p: NRmiR-345–5p: 0.936miR-362–5p: 0.999miR-518f-3p: 0.200(FDR - adjusted p value)MPMLung_Ad: NR(100)Stage I - II: NR(100)
miR-130b-3p miR-302b-3p miR-518f-3p  ↓ 
let-7f-5p miR-345–5p miR-362–5p  ↓  Lung-Ad 
miR-1260a  ↑  MPM
EBCmiR-1260a
EBC;miR-1260a: 1.26miR-597–5p: 1.42 
Weber 201937  Plasma  miR-132–3pmiR-126–3p miR-103a-3p Combination of three miRNAs  ↓  Mann–Whitney U tests and Kruskal–Wallis testsMatching by age, sex, smoking status, and date of blood collection  NR  NR  NR  MPM  Epithelioid: 10(58.8)Biphasic: 2(11.8)Sarcomatoid: 3(17.6)Not specified: 2(11.8)  NR 
Matboli 201832  Blood serum  miR-548a-3p miR-20a  ↑  Kruskal–Wallis tests and one way analysisMatching by sex, age, history of smoking and asbestos exposure  Standardized coefficients (β) Linear regression analysismiRNA‐2053 after cutoff: 0.303(0.072–0.522)  CA;miR-250,053: 19.3729CO_Asb-Exp;miR-250,053: 0.8450CO_Non_Asb-Exp;miR-250,053: 0.7492  NR  MPM  NR  Stage I: 46(76.7)Stage II: 13 (21.7)Stage III: 1 (1.7) 
Santarelli 201922  Blood serum  miR-126miR-222  ↑  Multivariable logistic regression model adjusted for age, sex, and smoking  OR;miR-222: 1.501 (1.148–1.958)miR-222/miR-126: 0.138(0.019–0.076)  CA_NSCLC;miR-126: 0.90miR-205: 2.93miR-222: 1.84miR-520 g: 1.09CA_NSCLC-Asb;miR-126: 1.18miR-205: 2.91miR-222: 4.14miR-520 g: 0.63CA;miR-126: 0.45miR-205: 0.61miR-222: 0.85miR-520 g: 0.65  miR-222: 0.003miR-222/miR-126: 0.047(two-tailed Student t-test - adjusted p value)  MPM, NSCLC  Discovery,CA_NSCLC; Adenocarcinoma: NR(100)CA_NSCLC_Asb; Squamous: NR(25) Adenocarcinoma: NR(75)CA; Epithelioid: NR(90) Biphasic: NR(10)Serum_TrainingCA_NSCLC; Squamous: NR(35) Large cell: NR(10) Adenocarcinoma: NR(55)CA_NSCLC_Asb; Squamous: NR(36) Large cell: NR(18) Adenocarcinoma: NR(46)CA; Epithelioid: NR(75) Sarcomatoid: NR(25)  NR 
Cavalleri, 201723  Plasmatic extracellular vesicles (Evs)  miR-103amiR-98miR-148bmiR-744miR-30e-3p  ↓  Cox multivariableregression model adjusted for age, sex, BMI and smoking.  HR;miR-103a: 0.37(0.13–1.13)miR-30e-3p: 0.51(0.17 - 1.52)  miR-103: 0.25miR-98: 0.23miR-148b: 0.29miR-744: 0.31miR-30e-3p: 0.37  miR-103: 0.056miR-98: 0.056miR-148b: 0.056miR-744: 0.056miR-30e-3p: 0.056(FDR - adjusted p value)  MPM  Epithelioid: 10(NR)Biphasic: 11(NR)Sarcomatoid: 01(NR)Not specified: 01(NR)  NR 
Mozzoni 201725  Blood plasma and FFPE tissue  miR-17miR-126 miR-16 miR-486  ↓  Two-sided, two-sample t-testNR  NR  NR  NR  MPM  Epithelioid: 26(NR)Biphasic: 6(NR)  Stage I: 2(NR)Stage II: 9(NR)Stage III: 15(NR)Stage IV: 6(NR) 
Weber 201735  Plasma  miR-132–3p  ↓  Wilcoxon rank-sum testsMatching by age and smoking  NR  NR  NR  MPM  Discovery;Epithelioid: 14(NR)Biphasic: 4(NR)Sarcomatoid: 3(NR)Not specified: 0(NR)  NR 
Truini 201724  FFPE biopsy tumor  miR-99alet-7cmiR-125b  ↓  Cox multivariable regression model adjusted for age and histological subtype  HR;Training setmiR-99a: 0.42(NR)let-7c: 0.32 (NR)miR-125b: 0.41 (NR)TCGA MPM datasetmiR-99a-5p: 0.75(NR)let-7c: 0.79(NR)miR-125b-5p: 0.63(NR)  miR-99a-5p: 0.14let-7c: 0.18miR-125b-5p: 0.31  Training set;miR-99a: 0.0014 let-7c: 0.0014miR-125b: 0.0010TCGA MPM datasetmiR-99a-5p: 0.0040let-7c: 0.0240miR-125b-5p: 0.0010(Cox proportional hazard – adjusted p value)  MPM  Epithelioid: 20(74) Sarcomatoid: 3(11) Biphasic: 3 (11) Not typified: 1(4)  NR 
Bononi 201626  Blood serum  miR-197–3pmiR-1281miR 32–3pmiR-197–3pmiR-32–3pmiR-1281  ↑  NR  NR  miR-1281: 3.7miR-32–3p: 18miR-197–3p; CA vs. CO_Non_Asb-Exp: 4.4CA vs. CO_Asb-Exp: 5.5miR-1281; CA vs. CO_Non_Asb-Exp: 3.7CO_Asb-Exp vs. CO_Non_Asb-Exp: 3.3miR-32–3p; CA vs CO_Non_Asb-Exp: 17.6CO_Asb-Exp vs. CO_Non_Asb-Exp: 61.5miR-197–3p; CA vs. CO_Non_Asb-Exp: 1.8CA vs. CO_Asb-Exp: 2.5miR-1281; CA vs. CO_Non_Asb-Exp: 2.5CA vs. CO_Asb-Exp: 3.5  NR  MPM  NR  NR 
Ak 201541  Fresh frozen tissues  miR-484miR-320let-7amiR-744miR-20amiR-193blet-7dmiR-125a-5pmiR-92amiR-155miR-152  ↑  NR  NR  miR-484: 5.58miR-320: 2.87let-7a: 13.93miR-744: 4.26miR-20a: 5.7miR-193b: 3.03let-7d: 5.82miR-125a-5p: 8.17miR-92a: 2.39miR-155: 3.16miR-152: 2.93  miR-484: 0.010miR-320: 0.017let-7a: 0.019miR-744: 0.019miR-20a: 0.019miR-193b: 0.019let-7d: 0.045miR-125a-5p: 0.045miR-92a: 0.045miR-155: 0.045miR-152: 0.047(Multiple hypothesis testing, q value function – adjusted p value)  MPM  Epithelial:10(55.6)Mixed: 4(22.2)Sarcomatoid: 4(22.2)  Stage I - II: 4 (22.2)Stage III - IV: 14 (77.8) 
Santarelli 201527  Blood serum  miR-126  ↓  Multivariable regression modeladjusted for age, sex, smoking and asbestos exposure  CO_Non_Asb-Exp vs CO_Asb-Exp;miR-126: 1.23(1.0–1.6) (p = 0.056)CO_Asb-Exp vs. CA;MiR-126: 1.13(0.9–1.4) (p = 0.259)CA vs. CO_Non_Asb-Exp;MiR-126: 1.34(1.0–1.8) (p = 0.05)  NR  NR  MPM  Epithelioid: 33 (73 %)Biphasic: 9 (20 %)Sarcomatoid: 3 (7 %)  NR 
Kirschner 201531  Formalin-fixed paraffin embedded (FFPE) tumor specimens  miR-21–5pmiR-23a-3pmiR-30e-5pmiR-221–3pmiR-222–3p miR-31–5p  ↓  Multivariable logistic regression model adjusted for histological subtype, age, and sex  OR;miR-21–5p: 0.87miR-23a-3p: 1.20miR-30e-5p: 0.79miR-221–3p: 0.79miR-222–3p: 0.90miR-31–5p: 1.06HR from Cox regression model:Univariable model:miR-21–5p: 2.84(1.48–5.45)Multivariable model:hsa-miR-21–5p: 3.35(1.66–6.75)  miR-222–3p: −4.43miR-221–3p: −3.51miR-210–3p: −3.46miR-21–5p: −2.76miR-93–5p: −2.67miR-106b-5p: −2.51miR-17–5p: −2.50miR-27a-3p: −2.16miR-20a-5p: −2.12miR-19b-3p: −2.02miR-30e-5p: −2.02miR-23a-3p: −1.81miR-662: 2.88Microarray only;miR-1469: 2.02miR-1826: 2.29miR-298: 15.39RT-qPCR only;miR-29c-5p: NAmiR-31–5p: NAmiR-106a-5p: NAmiR-126–3p: NAmiR-625–3p: NAmiR-92a-3p: NAmiR-24–3p: NART-qPCR ResultsMicroarray and RT-qPCR;miR-222–3p: −2.7miR-221–3p: −2.49miR-210–3p: −2.68miR-21–5p: −1.76miR-93–5p: −2.29miR-106b-5p: −2.21miR-17–5p: −2.23miR-27a-3p: −1.79miR-20a-5p: −1.82miR-19b-3p: −1.49miR-30e-5p: −2.34miR-23a-3p: −1.73miR-662: 1.14RT-qPCR;miR-29c-5p: 1.03miR-31–5p: 1.51miR-106a-5p: −2.00miR-126–3p: −1.75miR-625–3p: −1.11miR-92a-3p: −1.39miR-24–3p: 1.51  miR-221–3p: 0.0147miR-210–3p: 0.0465miR-21–5p: 0.0465miR-93–5p: 0.0495miR-27a-3p: 0.0465(Benjamini-Hochberg Correction for FDR – adjusted p value)  MPM  EPP - Complete cohort; Epithelioid: 65(76) Biphasic: 20(24) Sarcomatoid: 0(0)P/D - Complete cohort; Epithelioid: 37(49) Biphasic: 26(35) Sarcomatoid: 12(16)  NR 
Lamberti 201528Blood serummiR-101miR-25miR26bmiR335miR433  ↑  NRNRNRNRMPMEpithelial: 07(NR)Sarcomatoid: 03(NR)Mixed: 04(NR)Stage I: 05(NR)Stage II: 03(NR)Stage III: 06(NR)
miR191miR-223  ↓ 
Andersen 201440Formalin-fixed, paraffin-embedded tissue specimensmiR-378miR-365amiR-193a-3pmiR-193bmiR-210  ↑  Multivariable logistic regression model used to estimate the performance of each miRNA (i.e., miR-143, miR-145, and miR-652) adjusted for the effect of the other 2 miRNAsEstimate (where p< 0.001)Intercept: 4.38(4.22–4.54)miR-126: 0.53(0.49–0.57)miR-143: 0.98(0.94–1.02)miR-145: −2.34[(−2.27) – (−2.39)]miR-652: −1.45 [(−1.40) – (−1.50)]CO_DB vs CAmiR-126: 1.95miR-143: 2.44miR-145: 1.54miR-193a-3p: 2.49miR-193b: 1.31miR-652: 1.20CA vs CO_NNPmiR-126: −2.91miR-143: −2.62miR-145: −6.95miR-193a-3p: 2.38miR-193b: −1.90miR-652: −3.06CO_DB;miR-126: −1.91 (1.53)miR-143: −1.32 (1.11)miR-145: −1.91 (1.33)miR-193a-3p: −2.43 (1.20)miR-193b: −0.37 (0.66)miR-652: 1.60 (1.12)CO_NNP;miR-126: −4.42 (1.53)miR-143: −4.00 (1.64)miR-145: −5.33 (1.30)miR-193a-3p: −2.36 (1.32)miR-193b: 0.95 (1.12)miR-652: −0.27 (1.11)CA;miR-126: −2.87 (1.28)miR-143: −2.61 (1.27)miR-145: −2.53 (1.42)miR-193a-3p: −1.11 (1.13)miR-193b: 0.02 (1.24)miR-652: 1.34 (0.87)CO_PTHX;miR-126: −5.50 (1.40)miR-143: −4.13 (1.49)miR-145: −4.79 (1.27)miR-193a-3p: −2.38 (0.76)miR-193b: −1.14 (0.74)miR-652: 0.30 (1.17)turky-kramer post hoc test – adjusted p valueMPMMPM; Epithelioid: 18(45), Biphasic: 22(55)CO_DB; Epithelioid: 9(75), Biphasic: 3(25)CA,Stage I: 1(3)Stage II: 6(15)Stage III: 23(58)Stage IV: 10(25)CO_DB,Stage I: 1(8)Stage II: 8(67)Stage III: 3(25)
let-7cmiR-99a miR-126miR143miR-145miR-144–5pmiR-451amiR-486–5pmiR-652  ↓ 
Weber 201438  Blood - cellular blood fraction  miR-103a-3p  NR  NR  NR  NR  NR  MPM  Epithelioid: 28(NR), Biphasic: 6(NR), Sarcomatoid: 5(NR), Not specified: 4(NR)  NR 
Gayosso-Gómez 201433  Blood serum  miR-1292–5pmiR-409–5pmiR-92b-5pmiR-4791miR-185–5pmiR-96–5pmiR-1271–5p  ↑  NR  NR  CA vs. CO_Non_Asb-ExpmiR-4791: 8.93miR-185–5p: 3.995miR-96–5p: 4.453miR-1271–5p: InfmiR-1292–5p: InfmiR-409–5p: InfmiR-92b-5p: 6.33CA _Lung-Ad vs CO_Non_Asb-ExpmiR-4791: 10.1449miR-185–5p: 5.1217miR-1271–5p: InfCA vs. CA _Lung-AdmiR-1292–5p: 2.345miR-409–5p: 2.603  NR  MPM  CA;Epithelioid: 11(NR)  CA, IIIA: 01(NR), IIIB: 03(NR), IV: 04(NR), IIA: 04(NR), IIA: 01(NR), NR: 03(NR)CA _Lung-Ad; IIIB: 05, IV: 31 
Xu 201344TumormiR-551bmiR-483–5pmiR-206miR-363  ↑  NRNRmiR-363: 23.8miR-130b: 3.5miR-221: 3.7miR-155: 3.8miR-21: 3.9miR-379: 4.1miR-629: 7.6miR-363: 9.3E-06miR-130b: 1.9E-04miR-221: 4.1E-03miR-155: 1.0E-03miR-21: 1.7E-03miR-379: 1.8E-02miR-629: 9.7E-05(Benjamini-Hochberg Correction for FDR – adjusted p value)MPMEpithelial: 18(NR)Biphasic: 4(NR)Sarcomatoid: 3(NR)NR
miR-323–3pmiR-34bmiR-514miR-130bmiR-221miR-155miR-21  ↓ 
Muraoka 201334  Serum  miR-34b/c  ↑  NR  NR  NR  NR  Advanced MPM  Epithelioid: 36(75)Biphasic: 8(17)Sarcomatoid: 4(8)  Stage I: 12(25)Stage II: 5(10)Stage III: 16(33)Stage IV: 12(25)Unknown: 3(7) 
Kirschner 201242  Blood plasma  miR-29c*miR-92amiR-625–3p  ↑  NR  NR  Plasma;miR-29c: 1.64In tumors;miR-625–3p: 4.35miR-29c: −2.65miR-92a: −1.8  NR  MPM  Test Cohort – CA;Epithelioid: 9(60)Biphasic: 3(20)Sarcomatoid: 2(13.33)Unspecified: 1(0.07)Tissue samples;Epithelioid: 15(83.33)Biphasic: 3(16.66)Sarcomatoid: 0  NR 
Weber 201239  Cellular fraction of human peripheral blood  miR-103miR-20a  ↓  Mann-Whitney unpairedtestAge, sex, and smoking status were matched  NR  NR  NR  MPM  NR  NR 
Tomasetti 201229  Blood serum  miR-126  ↓  One-way ANOVA to evaluate differences among MM and NSCLC patients and healthy controls.  NR  NR  Post-hoc Bonferroni test  MPMNSCLC  NR  NR 
Foss 201130  Blood serum  miR-1254miR-574–5p  ↑  NR  NR  NR  miR-574–5p: 0.22miR-1254: 0.42(FDR – adjusted p value)  Early-stage NSCLC  CA_NSCLC, Adenocarcinoma: 6(NR), Bronchioloalveolar carcinoma: 1(NR), Squamous cell carcinoma: 1(NR), Large cell carcinoma: 1(NR), Other: 1(NR), Unavailable: 1(NR)  Discovery,NSCLC,Stage I: 4Stage I/II: 0Stage II: 6Unavailable: 1MPMStage I: 1Stage I/II: 0Stage II: 2Unavailable: 0 
Nymark 201143TissuesmiR-148b miR-374a miR-24–1* let-7dlet-7emiR-199b-5pmiR-331–3p miR-96  ↑  NRAge, sex, nationality, smoking history and distribution of histological types were matchedNRmiR-148b: 0.325miR-374a: 0.5335714miR-24–1*: 0.19904763  miR-148b: 0.028543miR-374a: 0.028543miR-24–1*: 0.047273  MPMExposed PatientsLCLC: 03AC: 06SCC: 03SCLC: 02Non-exposed patientsLCLC: 01AC: 05SCC: 06SCLC: 02NR
miR-939miR-671–5pmiR-605miR-1224–5pmiR-202  ↓  CO_Asb-Exp;miR-939: −1.2571429miR-671–5p: −0.42619047miR-605: −0.21642858miR-1224–5p: −0.52761906miR-202: −0.632619Lung-AdenocarcinomaCO_Asb-Exp;miR-202: −1.142  miR-939: 0.018745miR-671–5p: 0.018745miR-605: 0.018745miR-1224–5p: 0.018745miR-202: 0.047273Lung-AdCO_Asb-Exp;miR-199b-5p: 0.049309miR-374a: 0.057633let-7d: 0.067007let-7e: 0.067007miR-331–3p: 0.067007miR-96: 0.067007miR-24–1: 0.067007Lung-AdCO_Asb-Exp;miR-202: 0.049309(Benjamini-Hochberg test, FDR – adjusted p value) 

Abbreviations: CA: cases, CO_Non_Asb-Exp: controls non-exposed to asbestos, MPM: malignant pleural mesothelioma, CO_Asb-Exp: controls exposed to asbestos, exp: exposure, +ve exp: positive exposure, -ve exp: negative exposure, EV: extracellular vesicles, Lung-Ad: lung adenocarcinoma, N: total sample size, M: male, F: female, S: smoker, NS: non-smoker, Ex: former smoker, NA: data not available, N/A: not applicable, EBC: exhaled breathe condensate, NR: data not reported, NSCLC: non-small cell lung cancer, NSCLC_Asb: Asbestos exposed non-small cell lung cancer, TS: training set, VS: validation set, FFPE: formalin-fixed paraffin embedded, EPP: extra pleural pneumonectomy, P/D: pleurectomy ± decortication, LS: long survivor, SS: short survivor, NNP: patient-matched non-neoplastic pleura, PTHX: non neoplastic reactive mesothelial proliferation due to pneumothorax, BAsb-Exp: Benign pleural asbestosis, Y: years, OR: Odds ratio, HR: Hazard ratio, (β): β, standard co-efficient.

Table 4.

Diagnostic and prognostic accuracy of the miRNAs significantly associated with increased lung cancer risk in the included studies.

Author, Year  miRNA(s)  Sensitivity (%)  Specificity (%)  Sensibility specificity at cut-off  Cut off Value  Positive predictive value (PPV)  Negative predictive value (NPV)  Areas under the curve (AUC) and (95 % CI) for diagnosis  Areas under the curve (AUC) and (95 % CI) for survival (months)  Cancer Histology  Cancer Stage 
Casalone 202218  miR-11,400miR-148a-3pmiR-409–3p  miR-11,400miR-148–3p and miR-409Discovery set (Prospective): 75 %Validation (Retrospective): 53 %  miR-11,400 miR-148–3pand miR-409Discovery set (Prospective): 70 %Validation (Retrospective): 95 %  NR  NR  miR-11,400miR-148–3p and miR-409Discovery set (Prospective): 71 %Validation (Retrospective): 94 %  miR-11,400 miR-148–3p and miR-409Discovery set (Prospective): 74 %Validation (Retrospective): 57 %  miR-11,400miR-148–3p and miR-409Discovery set (Prospective): 81 %Validation (Retrospective): 86 %  NR  NR  NR 
Mauro 202319  miR-197‑3p  NR  NR  NR  NR  NR  NR  ddPCR analyses; miR-197–3p,CA vs. CO_Asb-Exp: 0.65(0.563–0.739)CA vs CO_Non_Asb-Exp: 0.55(0.454–0.640)RT-qPCR analyses; miR-197–3p,CA vs. CO_Asb-Exp: 0.62(0.525–0.708)CA vs CO_Non_Asb-Exp: 0.56(0.472–0.657)  Epithelioid: 13.5(±0.6)Sarcomatoid: 7.9(±0.7)Biphasic: 12.4(±0.6)TOT: 11.5(±0.6)  Epithelioid: 27 (36.0)Sarcomatoid: 20 (26.7)Biphasic: 28 (37.3)  NR 
Jiménez-Ramírez 202236  miR-103a-3p  miR-103a-3p;M: 4.4 %F: 0 %  miR-103a-3p;M: 95.5 %F: 97.4 %  NR  miR-103a-3p;M: 1782F: 3082  M;TP: 4TN: 171F;TP: 00TN: 39  M;FP: 8FN: 86F;FP: 0FN: 18  miR-103a-3p;M: 0.426(0.355–0.497)F: 0.437(0.284–0.589)  NR  Epithelioid: 102(94.4)Biphasic: 2(1.9)Sarcomatoid: 4 (3.7)  NR 
Weber 201937  miR-132–3pmiR-126–3p miR-103a-3p Combination of three miRNAs  miR-132–3p: 71 %miR-126–3p: 59 %miR-103a-3p: 82 %Combination of three miRNAs: 82 %  miR-132–3p: 47 %miR-126–3p: 72 %miR-103a-3p: 42 %Combination of three miRNAs: 47 %  NR  NR  NR  NR  miR-132–3p: 0.542(0.370–0.713)miR-126–3p: 0.614(0.439–0.789)miR-103a-3p: 0.603(0.440–0.765)Combination of three miRNA (s): 0.605(0.445–0.765)  NR  Epithelioid: 10(58.8)Biphasic: 2(11.8)Sarcomatoid: 3(17.6)Not specified: 2(11.8)  NR 
Matboli 201832  miR-548a-3pmiR-20aCombination miRNAs  miR 548a-3p: 91.7 %mir-20a: 96.7 %Combined (mir20a + miR-548a-3p): 100 %  miR 548a-3p: 97.5 %mir-20a: 95.0 %Combined (mir20a + miR-548a-3p): 87.5 %  NR  miRNA-548a-3p: 1.69miRNA-20a: 1.2Combind miRNAs: 1.7  miR 548a-3p: 98.2 %mir20a: 96.7 %Combined (mir20a + miR-548a-3p): 100 %  miR 548a-3p: 88.6 %mir20a: 95.0 %Combined (mir20a + miR-548a-3p): 92.3 %  miR-548a-3p: 0.922 (0.855–0.982)miR-20a: 0.98 (0.927–0.992)Combind miRNAs: 0.96 (0.917–0.996)  NR  NR  Stage I: 46(76.7)Stage II: 13 (21.7)Stage III: 1 (1.7) 
Santarelli 201922  miR-126miR-205 miR-222miR-520 g  miR-222: 80 %  miR-222: 70 %  NR  miR-222: 0.466  NR  NR  miR-222: 0.767(0.675–0.858)  NR  Discovery,CA_NSCLC; Adenocarcinoma: NR (100)CA_NSCLC_Asb; Squamous: NR(25) Adenocarcinoma: NR(75)CA; Epithelioid: NR(90) Biphasic: NR(10)Serum_TrainingCA_NSCLC; Squamous: NR(35) Large cell: NR(10) Adenocarcinoma: NR(55)CA_NSCLC_Asb; Squamous: NR(36) Large cell: NR(18) Adenocarcinoma: NR(46)CA; Epithelioid: NR(75) Sarcomatoid: NR(25)  NR 
Cavalleri 201723  miR-103amiR-98miR-148b miR-744miR-30e-3p  miR-103: 1.000 miR-98: 1.000miR-148b: 1.000miR-744: 0.727miR-30e-3p: 0.636  miR-103: 0.667miR-98: 0.667miR-148b: 0.733miR-744: 0.867miR-30e-3p: 0.933  NR  NR  NR  NR  miR-103: 0.864(0.724–1.000)miR-98: 0.864(0.727–1.000)miR-148b: 0.852(0.699–1.000)miR-744: 0.845(0.705–0.986)miR-30e-3p: 0.827(0.679–0.976)  NR  Epithelioid: 10(NR)Biphasic: 11(NR)Sarcomatoid: 01(NR)Not specified: 01(NR)  NR 
Mozzoni 201725  miR-17miR-126 miR-16miR-486  NR  NR  miR-17: 80.0–84.4miR-126: 80.0–97.8miR-486: 80.0–89.1miR-16: 86.7–82.2  miR-17: 5.9miR-126: 5.4miR-486: 9.2miR-16: 77.5  NR  NR  miR-17: 0.88(0.78–0.98)miR-126: 0.95(0.89–1.00)miR-486: 0.88(0.79–0.96)miR-16: 0.89(0.81–0.97)  NR  Epithelioid: 26(NR)Biphasic: 6(NR)  Stage I: 2(NR)Stage II: 9(NR)Stage III: 15(NR)Stage IV: 6(NR) 
Weber 201735  miR-132–3p  miR-132–3p: 86 %Combination of miR-132–3p with the previously described miR-126; sensitivity: 77 %  miR-132–3p: 61 %Combination of miR-132–3p with the previously described miR-126; specificity: 77 %  NR  NR  NR  NR  Discovery group;miR-132–3p: 0.91(0.80–1.00)Verification group;miR-132–3p: 0.75(0.63–0.88)  NR  Discovery;Epithelioid: 14(NR)Biphasic: 4(NR)Sarcomatoid: 3(NR)Not specified: 0(NR)  NR 
Ak 201541  miR-484miR-320 let-7amiR-744 miR-20a miR-193b let-7dmiR-125a-5p miR-92amiR-155 miR-152  miR-320: ≤7.27let-7a: ≤11miR-125a-5p: ≤9.36  miR-320: 78 % - 100 %let-7a: 94 % - 83 %miR-125a-5p: 89 % - 100 %  NR  NR  NR  NR  miR-484: ≥0.90 (NR)miR-320: ≥0.90 (NR)let-7a: ≥0.90 (NR)miR-125a-5p: ≥0.90 (NR)miR-484: ≤8.15 (NR)  NR  Epithelial:10(55.6)Mixed: 4(22.2)Sarcomatoid: 4(22.2)  Stage I - II: 4 (22.2)Stage III - IV: 14 (77.8) 
Santarelli 201527  miR-126  miR-126: 75 %Met-TM: 60 %SMRPs: 60 %  miR-126: 54 %Met-TM: 82 %SMRPs: 89 %  NR  SMRPs: 1 (nmol/L)miR-126: 10×10–3 (relative exp)Met-TM: 1 (relative exp)  NR  NR  SMRPs: 0·818(0·723–0·914)miR-126: 0·710(0·568–0·822)Met-TM: 0·750 (0·641–0·858)  NR  Epithelioid: 33 (73 %)Biphasic: 9 (20 %)Sarcomatoid: 3 (7 %)  NR 
Kirschner 201531  miR-21–5p miR-23a-3p miR-30e-5p miR-221–3p miR-222–3p miR-31–5  Combined 6 miR-Score: 82.4 %  Combined 6 miR-Score: 80.6 %  NR  NR  NR  NR  Combined 6 miR-Score: 0.867(0.76–0.96)  EPP (median): 18.86 [0.07–122.41]P/D(median): 7.62 [0.33–224.82]LS (median): 57.2[45.83–90.48]SS (median): 6.4[1.94–8.28]  EPP - Complete cohort; Epithelioid: 65(76) Biphasic: 20(24) Sarcomatoid: 0(0)P/D - Complete cohort; Epithelioid: 37(49) Biphasic: 26(35) Sarcomatoid: 12(16)  NR 
Andersen 201440  miR-126miR-143 miR-145 miR-193a-3p miR-193bmiR-652  All miRNAs (not individual): 0.95 (95 % CI, 0.89 - 1.00)  All miRNAs (not individual): 0.93 (95 % CI, 0.87 - 1.00)  NR  NR  NR  NR  miR-126: 0.78 (0.64 - 0.92)miR-143: 0.76 (0.61 - 0.90)miR-145: 0.93 (0.85 - 1.00)miR-193a-3p: NAmiR-193b: NAmiR-652: 0.89 (0.80 - 0.90)  NR  MPM; Epithelioid: 18(45), Biphasic: 22(55)CO_DB; Epithelioid: 9(75), Biphasic: 3(25)  CA,Stage I: 1(3)Stage II: 6(15)Stage III: 23(58)Stage IV: 10(25)CO_DB,Stage I: 1(8)Stage II: 8(67)Stage III: 3(25) 
Weber 2014 38  miR-103a-3p  All subjects;miR-103a-3p: 86 %Epithelioid mesothelioma; miR-103a-3p: 74 %Biphasic mesothelioma; miR-103a-3p: 89 %  All subjectsmiR-103a-3p: 63 %Epithelioid mesothelioma; miR-103a-3p: 85 %Biphasic mesothelioma; miR-103a-3p: 63 %  miR-103a-3pFPR =4 %, Cut-off = 2.01 nmol/lMaximum YI: 749.61FPR = 4 %, Cut off = 99.73Without sarcomatoid mesothelioma, Maximum YI, Cut off = 749.61  All subjectsmiR-103a-3p: 749.61  All subjects, miR-103a-3pTP: 37TN: 33  All subjects, miR-103a-3pFP: 19FN: 6  miR-103a-3p: 0.76 (NR)  NR  Epithelioid: 28(NR), Biphasic: 6(NR), Sarcomatoid: 5(NR), Not specified: 4(NR)  NR 
Muraoka 201334  miR-34b/c  miR-34b/c: 67 %  miR-34b/c: 77 %  NR  NR  NR  NR  miR-34b/c: 0.77  NR  Epithelioid: 36(75)Biphasic: 8(17)Sarcomatoid: 4(8)  Stage I: 12(25)Stage II: 5(10)Stage III: 16(33)Stage IV: 12(25)Unknown: 3(7) 
Kirschner 201242  miR-29c*miR-92amiR-625–3p  CA;miR-625–3p: 73.33 %CO;miR-625–3p: 70 %  CA;miR-625–3p: 78.57 %CO;miR-625–3p: 90 %  NR  NR  NR  NR  CA;miR-625–3p: 0.824 (0.669 - 0.979)CO;miR-625–3p: 0.793 (0.657 - 0.930)  NR  Test Cohort – CA;Epithelioid: 9(60)Biphasic: 3(20)Sarcomatoid: 2(13.33)Unspecified: 1(0.07)Tissue samples;Epithelioid: 15(83.33)Biphasic: 3(16.66)Sarcomatoid: 0  NR 
Weber 201239  miR-103, miR-20a  CO_Asb-Exp: 83 %CO_Non_Asb-Exp: 78 %  CO_Asb-Exp: 71 %CO_Non_Asb-Exp: 76 %  NR  miR-103: 0.621  NR  NR  miR-103, CA vs. CO_Asb-Exp: 0.757 (95 % CI: 0.586–0.929)miR-103, CA vs. CO_Non_Asb-Exp: 0.871 (95 %CI 0.766–0.977)  NR  NR  NR 
Tomasetti 201229  miR-126  miR-126: 80 %  miR-126: 60 %  NR  NR  NR  NR  CO_Non_Asb-Exp Vs. CA:0.894(0.821–0.968)CO_Non_Asb-Exp Vs. CA_NSCLC: 0.675 (0.503–0.847)CA Vs. CA_NSCLC: 0.751(0.616–0.886)  NR  NR  NR 
Foss 201130  miR-1268, miR-574–5p, miR-1254, miR-1258  NSCLC,miR-1254: 82 %miR-574–5p: 82 %Discovery cohort,miR-1254: 73 %miR-574–5p: 73 %  NSCLC,miR-1254: 77 %miR-574–5p: 77 %Discovery cohort,miR-1254: 71 %miR-574–5p: 71 %  NR  NR  NR  NR  Discovery cohort, miR-1254 and miR-574–5p [miR-1254 + miR-574–5p] = 0.77Validation cohort, miR-1254 and miR-574–5p [miR-1254 + miR-574–5p] = 0.75  NR  CA_NSCLC, Adenocarcinoma: 6(NR), Bronchioloalveolar carcinoma: 1(NR), Squamous cell carcinoma: 1(NR), Large cell carcinoma: 1(NR), Other: 1(NR), Unavailable: 1(NR)  Discovery,NSCLC,Stage I: 4Stage I/II: 0Stage II: 6Unavailable: 1MPMStage I: 1Stage I/II: 0Stage II: 2Unavailable: 0 

Abbreviations: CA: cases, CO_Non_Asb-Exp: controls non-exposed to asbestos, MPM: malignant pleural mesothelioma, CO_Asb-Exp: controls exposed to asbestos, exp: exposure, +ve exp: positive exposure, -ve exp: negative exposure, EV: extracellular vesicles, Lung-Ad: lung adenocarcinoma, N: total sample size, M: male, F: female, S: smoker, NS: non-smoker, Ex: former smoker, NA: data not available, N/A: not applicable, EBC: exhaled breathe condensate, NR: data not reported, NSCLC: non-small cell lung cancer, NSCLC_Asb: Asbestos exposed non-small cell lung cancer, TS: training set, VS: validation set, FFPE: formalin-fixed paraffin embedded, EPP: extra pleural pneumonectomy, P/D: pleurectomy ± decortication, LS: long survivor, SS: short survivor, NNP: patient-matched non-neoplastic pleura, PTHX: non neoplastic reactive mesothelial proliferation due to pneumothorax, BAsb-Exp: Benign pleural asbestosis, Y: years.

Meta-analysis

We managed to perform a meta-analysis for miRNAs diagnostic accuracy by pooling the AUC reported by seven similar studies that found the same miRNAs associated to MPM diagnosis among men only.25,27,29,35-37,40 One study,37 contributed twice to the meta-analysis for two different mi-RNAs. Random effect methods were used given the high heterogeneity detected (>50 %). We estimated for miR-126, miR-132–3p, and miR-103a-3p pooled diagnostic AUCs of 85 %, 73 %, and 50 %, respectively. The overall pooled accuracy resulted 73 % (Fig. 2). No small study effect bias was shown in the funnel plot (see supplementary file Fig. 1s) as confirmed by the Egger test (p-value= 0.450).

Fig. 2.

Meta-analysis of selected studies evaluating the diagnostic accuracy expressed as Area Under the Curve (AUC) and 95 % Confidence Intervals (CIs) of specific miRNAs for MPM among men only.

Footnote: AUC: Area Under the Curve; s.e.: standard error.

(0.27MB).
Discussion

In our systematic review and meta-analysis to evaluate the role of miRNAs as potential diagnostic and/or prognostic biomarkers of asbestos-related LC and MPM, we found that several miRNAs are promising candidates especially for MPM diagnosis. In particular, we managed to estimate for the three top miRNAs (miR-126, miR-132–3p, and miR-103a-3p) associated to MPM diagnosis a pooled accuracy of 73 % with the highest performance of 85 % for miR-126. In relation to MPM survival, miR-197‑3p19 and six combined miRNAs (miR-21–5p, miR-23a-3p, miR-30e-5p, miR-221–3p, miR-222–3p, miR-31–5p)31 appeared associated to a better prognosis. In relation to asbestos-related LC, only single miRNAs were associated with diagnosis and/or survival, so we were unable to perform a meta-analysis among the most frequently reported. Of note, miR-126, was confirmed also for LC diagnosis, alone,29 and in association with miR-222.22 Also, miR-1254 and miR-574–5p30 were found associated with early-stage NSCLC samples even months before clinical diagnosis, so potentially useful for LC screening programs. We did not find any promising miRNAs in relation to asbestos-related LC survival.

The strength of our systematic review is the comprehensive search strategy including also the so-called grey literature, as also confirmed by the absence of publication bias in the Egger test for the studies included in the meta-analysis. Also, we used a standard tool to assess study quality. Further, we evaluated both diagnosis and prognosis for both asbestos-related LC and MPM. Finally, we managed to quantify the diagnostic performance of the top miRNAs associated with MPM using a meta-analytic approach, so quantifying their potential role as cancer biomarkers.

We acknowledge several limitations. Almost all studies were case-controls, so subject to reverse causation bias. Almost all studies included men only, and had small sample size, so preventing generalizability of the findings to women. Also, asbestos exposure was usually self-reported and without information on type and duration of exposure, so vulnerable to exposure misclassification; there is even no evidence this was a differential between cases and hospital controls. The studies were also heterogeneous in methodology, and this allowed us to perform a meta-analysis only on a small selected sub-sample of more comparable studies. In addition, given that we pooled AUCs estimated also from multivariable models or studies matched by design, we cannot rule out a certain degree of overestimation.

Several knowledge gaps on this topic remain to be addressed: the accuracy of miRNAs to predict asbestos-related LC and MPM in prospective longitudinal studies of healthy ex-asbestos-exposed subjects, especially among women; the exposure-response relationship between asbestos and miRNA changes; the underlying biological mechanisms, and the influence of internal (e.g. age, sex, genes) and external (e.g. smoking, co-exposure to other occupational agents, therapies) factors on miRNA expression perturbations. Future research addressing these shortcomings in large prospective studies is warranted to shed some light on these issues.

Conclusion

To conclude, in this comprehensive systematic review and meta-analysis we identified some promising miRNA candidates to predict diagnosis and survival of asbestos-related LC and MPM. Future large longitudinal standardized validation studies are needed to confirm these findings, assess their clinical relevance, and address present knowledge gaps. The current poor survival and quality of life for patients affected by asbestos-related lung cancers, especially MPM, urge the identification of accurate and reliable, non-invasive, early diagnostic biomarkers to be included in cancer screening protocols among ex asbestos-exposed subjects, as well as to provide molecular targets for new therapies. However, the best prevention remains to ban asbestos globally to avoid the associated important death toll for the long-term future.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Regione Autonoma della Sardegna, LR 7/2007, “Promozione della Ricerca Scientifica e dell'Innovazione Tecnologica in Sardegna” year 2020; POR project FESR 2014-2020.

References
[1]
GBD 2019 Risk Factors Collaborators.
The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019.
[2]
IARC.
Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts.
IARC Monogr Eval Carcinog Risks Hum, 100 (2012), pp. 11-465
[3]
H. Wolff, T. Vehmas, P. Oksa, J. Rantanen, H. Vainio.
Asbestos, asbestosis, and cancer, the Helsinki criteria for diagnosis and attribution 2014: recommendations.
Scand J Work Environ Health, 41 (2015), pp. 5-15
[4]
J.D. Stanaway, A. Afshin, E. Gakidou, S.S. Lim, D. Abate, K.H. Abate, et al.
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.
Lancet, 392 (2018), pp. 1923-1994
[5]
M. Goldberg, D. Luce.
The health impact of nonoccupational exposure to asbestos: what do we know?.
Eur J Cancer Prev, 18 (2009), pp. 489
[6]
A. Marinaccio, A. Binazzi, M. Bonafede, M. Corfiati, D. Di Marzio, A. Scarselli, et al.
Malignant mesothelioma due to non-occupational asbestos exposure from the Italian national surveillance system (ReNaM): epidemiology and public health issues.
Occup Environ Med, 72 (2015), pp. 648-655
[7]
International Ban Asbestos Secretariat. Available at: (http://www.ibasecretariat.org/alpha_ban_list.php2023).
[8]
WHO. Asbestos: elimination of asbestos-related diseases. Available at: (https://www.who.int/en/news-room/fact-sheets/detail/asbestos-elimination-of-asbestos-related-diseases2023).
[9]
The Lancet Respiratory M.
Pleural mesothelioma: tackling a deadly cancer.
Lancet Respir Med, 7 (2019), pp. 99
[10]
S.B. Markowitz.
Lung cancer screening in asbestos-exposed populations.
Int J Environ Res Public Health, 19 (2022), pp. 2688
[11]
A. Scherpereel, I. Opitz, T. Berghmans, I. Psallidas, M. Glatzer, D. Rigau, et al.
ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma.
Eur Respir J, 55 (2020), pp. 1900953
[12]
Y. Peng, C.M. Croce.
The role of MicroRNAs in human cancer.
Signal Transduct Target Ther, 1 (2016), pp. 15004
[13]
C.E. Condrat, D.C. Thompson, M.G. Barbu, O.L. Bugnar, A. Boboc, D. Cretoiu, et al.
miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis.
[14]
M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, et al.
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
Int Surg J, 88 (2021),
[15]
G.A. Wells, B. Shea, D. O'Connell, J. Peterson, V. Welch, M. Losos, et al.
The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses.
Ottawa Hospital Research Institute, (2000),
[16]
R. DerSimonian, N. Laird.
Meta-analysis in clinical trials.
Control Clin Trials, 7 (1986), pp. 177-188
[17]
M. Matboli, A.E. Shafei, M.A. Ali, A.I. Gaber, A. Galal, O. Tarek, et al.
Clinical significance of serum DRAM1 mRNA, ARSA mRNA, hsa-miR-2053 and lncRNA-RP1-86D1. 3 axis expression in malignant pleural mesothelioma.
J Cell Biochem, 120 (2019), pp. 3203-3211
[18]
E. Casalone, G. Birolo, B. Pardini, A. Allione, A. Russo, C. Catalano, et al.
Serum extracellular vesicle-derived microRNAs as potential biomarkers for pleural mesothelioma in a European prospective study.
Cancers, 15 (2022), pp. 125
[19]
G. Di Mauro, F. Frontini, E. Torreggiani, M.R. Iaquinta, A. Caselli, C. Mazziotta, et al.
Epigenetic investigation into circulating microRNA 197-3p in sera from patients affected by malignant pleural mesothelioma and workers ex-exposed to asbestos.
[20]
L. Ferrari, S. Iodice, L. Cantone, B. Dallari, L. Dioni, L. Bordini, et al.
Identification of a new potential plasmatic biomarker panel for the diagnosis of malignant pleural mesothelioma.
Med Lav, 113 (2022),
[21]
A. Faversani, C. Favero, L. Dioni, A.C. Pesatori, V. Bollati, M. Montoli, et al.
An EBC/plasma miRNA signature discriminates lung adenocarcinomas from pleural mesothelioma and healthy controls.
Front Oncol, 11 (2021),
[22]
L. Santarelli, S. Gaetani, F. Monaco, M. Bracci, M. Valentino, M. Amati, et al.
Four-miRNA signature to identify asbestos-related lung malignancies.
Cancer Epidemiol Biomarkers Prev, 28 (2019), pp. 119-126
[23]
T. Cavalleri, L. Angelici, C. Favero, L. Dioni, C. Mensi, C. Bareggi, et al.
Plasmatic extracellular vesicle microRNAs in malignant pleural mesothelioma and asbestos-exposed subjects suggest a 2-miRNA signature as potential biomarker of disease.
PLoS One, 12 (2017),
[24]
A. Truini, S. Coco, E. Nadal, C. Genova, M. Mora, M.G. Dal Bello, et al.
Downregulation of miR-99a/let-7c/miR-125b miRNA cluster predicts clinical outcome in patients with unresected malignant pleural mesothelioma.
Oncotarget, 8 (2017), pp. 68627
[25]
P. Mozzoni, L. Ampollini, M. Goldoni, R. Alinovi, M. Tiseo, L. Gnetti, et al.
MicroRNA expression in malignant pleural mesothelioma and asbestosis: a pilot study.
Dis Markers, 2017 (2017),
[26]
I. Bononi, M. Comar, A. Puozzo, M. Stendardo, P. Boschetto, S. Orecchia, et al.
Circulating microRNAs found dysregulated in ex-exposed asbestos workers and pleural mesothelioma patients as potential new biomarkers.
Oncotarget, 7 (2016), pp. 82700
[27]
L. Santarelli, S. Staffolani, E. Strafella, L. Nocchi, N. Manzella, P. Grossi, et al.
Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma.
Lung Cancer, 90 (2015), pp. 457-464
[28]
M. Lamberti, R. Capasso, A. Lombardi, M. Di Domenico, A. Fiorelli, A. Feola, et al.
Two different serum MiRNA signatures correlate with the clinical outcome and histological subtype in pleural malignant mesothelioma patients.
PLoS One, 10 (2015),
[29]
M. Tomasetti, S. Staffolani, L. Nocchi, J. Neuzil, E. Strafella, N. Manzella, et al.
Clinical significance of circulating miR-126 quantification in malignant mesothelioma patients.
Clin Biochem, 45 (2012), pp. 575-581
[30]
K.M. Foss, C. Sima, D. Ugolini, M. Neri, K.E. Allen, G.J. Weiss.
miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer.
J Thorac Oncol, 6 (2011), pp. 482-488
[31]
M.B. Kirschner, Y.Y. Cheng, N.J. Armstrong, R.C. Lin, S.C. Kao, A. Linton, et al.
MiR-score: a novel 6-microRNA signature that predicts survival outcomes in patients with malignant pleural mesothelioma.
Mol Oncol, 9 (2015), pp. 715-726
[32]
M. Matboli, A.E. Shafei, A.E. Azazy, M. Reda, N. El-Khazragy, A.A. Nagy, et al.
Clinical evaluation of circulating miR-548a-3p and-20a expression in malignant pleural mesothelioma patients.
Biomark Med, 12 (2018), pp. 129-139
[33]
L. Gayosso-Gómez, G. Zárraga-Granados, P. Paredes-Garcia, R. Falfán-Valencia, M. Vazquez-Manríquez, L. Martinez-Barrera, et al.
Identification of circulating miRNAs profiles that distinguish malignant pleural mesothelioma from lung adenocarcinoma.
EXCLI J, 13 (2014), pp. 740
[34]
T. Muraoka, J. Soh, S. Toyooka, K. Aoe, N. Fujimoto, S. Hashida, et al.
The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma.
Lung Cancer, 82 (2013), pp. 485-490
[35]
D.G. Weber, K. Gawrych, S. Casjens, A. Brik, M. Lehnert, D. Taeger, et al.
Circulating miR-132-3p as a candidate diagnostic biomarker for malignant mesothelioma.
Dis Markers, 2017 (2017),
[36]
C. Jiménez-Ramírez, D. Gilbert Weber, G. Aguilar-Madrid, A. Brik, C.A. Juárez-Pérez, S. Casjens, et al.
Assessment of miR-103a-3p in leukocytes—No diagnostic benefit in combination with the blood-based biomarkers mesothelin and calretinin for malignant pleural mesothelioma diagnosis.
PLoS One, 17 (2022),
[37]
D.G. Weber, A. Brik, S. Casjens, K. Burek, M. Lehnert, B. Pesch, et al.
Are circulating microRNAs suitable for the early detection of malignant mesothelioma? Results from a nested case–control study.
BMC Res Notes, 12 (2019), pp. 1-6
[38]
D.G. Weber, S. Casjens, G. Johnen, O. Bryk, I. Raiko, B. Pesch, et al.
Combination of MiR-103a-3p and mesothelin improves the biomarker performance of malignant mesothelioma diagnosis.
PLoS One, 9 (2014),
[39]
D.G. Weber, G. Johnen, O. Bryk, K.-H. Jöckel, T. Brüning.
Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma–a pilot study.
PLoS One, 7 (2012), pp. e30221
[40]
M. Andersen, M. Grauslund, J. Ravn, J.B. Sørensen, C.B. Andersen, E. Santoni-Rugiu.
Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma.
J Mol Diagn, 16 (2014), pp. 418-430
[41]
G. Ak, S.C. Tomaszek, F. Kosari, M. Metintas, J.R. Jett, S. Metintas, et al.
MicroRNA and mRNA features of malignant pleural mesothelioma and benign asbestos-related pleural effusion.
Biomed Res Int, 2015 (2015),
[42]
M.B. Kirschner, Y.Y. Cheng, B. Badrian, S.C. Kao, J. Creaney, J.J.B. Edelman, et al.
Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma.
J Thorac Oncol, 7 (2012), pp. 1184-1191
[43]
P. Nymark, M. Guled, I. Borze, A. Faisal, L. Lahti, K. Salmenkivi, et al.
Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos-and histology-related changes in lung cancer.
Genes Chrom Cancer, 50 (2011), pp. 585-597
[44]
Y. Xu, M. Zheng, R.E. Merritt, J.B. Shrager, H.A. Wakelee, R.A. Kratzke, et al.
miR-1 induces growth arrest and apoptosis in malignant mesothelioma.
Chest, 144 (2013), pp. 1632-1643
Copyright © 2024. Sociedade Portuguesa de Pneumologia
Download PDF
Pulmonology
Article options
Tools
Supplemental materials

Are you a health professional able to prescribe or dispense drugs?