Share
array:22 [ "pii" => "S2531043724000540" "issn" => "25310437" "doi" => "10.1016/j.pulmoe.2024.04.008" "estado" => "S200" "fechaPublicacion" => "2024-05-19" "aid" => "1967" "copyright" => "Sociedade Portuguesa de Pneumologia" "copyrightAnyo" => "2024" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:17 [ "pii" => "S2531043724000564" "issn" => "25310437" "doi" => "10.1016/j.pulmoe.2024.04.012" "estado" => "S200" "fechaPublicacion" => "2024-05-28" "aid" => "1971" "copyright" => "Sociedade Portuguesa de Pneumologia" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Application and internal validation of lung ultrasound score in COVID-19 setting: The ECOVITA observational study" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0003" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1908 "Ancho" => 3000 "Tamanyo" => 302619 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0003" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara003" class="elsevierStyleSimplePara elsevierViewall">The calibration slope displays, in the form of a scatterplot, the comparison between the predicted outcome risk (x-axis) and the observed outcome risk (y-axis).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "L. Rinaldi, M. Lugarà, V. Simeon, F. Perrotta, C. Romano, C. Iadevaia, C. Sagnelli, L. Monaco, C. Altruda, M.C. Fascione, L. Restivo, U. Scognamiglio, N. Laganà, R. Nevola, G. Oliva, M.G. Coppola, C. Acierno, F. Masini, E. Pinotti, E. Allegorico, S. Tamburrini, G. Vitiello, M. Niosi, M.L. Burzo, G. Franci, A. Perrella, G. Signoriello, V. Frusci, S. Mancarella, G. Loche, G.F. Pellicano, M. Berretta, G. Calabria, L. Pietropaolo, F.G. Numis, N. Coppola, A. Corcione, R. Marfella, L.E. Adinolfi, A. Bianco, F.C. Sasso, I. de Sio" "autores" => array:43 [ 0 => array:2 [ "nombre" => "L." "apellidos" => "Rinaldi" ] 1 => array:2 [ "nombre" => "M." "apellidos" => "Lugarà" ] 2 => array:2 [ "nombre" => "V." "apellidos" => "Simeon" ] 3 => array:2 [ "nombre" => "F." "apellidos" => "Perrotta" ] 4 => array:2 [ "nombre" => "C." "apellidos" => "Romano" ] 5 => array:2 [ "nombre" => "C." "apellidos" => "Iadevaia" ] 6 => array:2 [ "nombre" => "C." "apellidos" => "Sagnelli" ] 7 => array:2 [ "nombre" => "L." "apellidos" => "Monaco" ] 8 => array:2 [ "nombre" => "C." "apellidos" => "Altruda" ] 9 => array:2 [ "nombre" => "M.C." "apellidos" => "Fascione" ] 10 => array:2 [ "nombre" => "L." "apellidos" => "Restivo" ] 11 => array:2 [ "nombre" => "U." "apellidos" => "Scognamiglio" ] 12 => array:2 [ "nombre" => "N." "apellidos" => "Laganà" ] 13 => array:2 [ "nombre" => "R." "apellidos" => "Nevola" ] 14 => array:2 [ "nombre" => "G." "apellidos" => "Oliva" ] 15 => array:2 [ "nombre" => "M.G." "apellidos" => "Coppola" ] 16 => array:2 [ "nombre" => "C." "apellidos" => "Acierno" ] 17 => array:2 [ "nombre" => "F." "apellidos" => "Masini" ] 18 => array:2 [ "nombre" => "E." "apellidos" => "Pinotti" ] 19 => array:2 [ "nombre" => "E." "apellidos" => "Allegorico" ] 20 => array:2 [ "nombre" => "S." "apellidos" => "Tamburrini" ] 21 => array:2 [ "nombre" => "G." "apellidos" => "Vitiello" ] 22 => array:2 [ "nombre" => "M." "apellidos" => "Niosi" ] 23 => array:2 [ "nombre" => "M.L." "apellidos" => "Burzo" ] 24 => array:2 [ "nombre" => "G." "apellidos" => "Franci" ] 25 => array:2 [ "nombre" => "A." "apellidos" => "Perrella" ] 26 => array:2 [ "nombre" => "G." "apellidos" => "Signoriello" ] 27 => array:2 [ "nombre" => "V." "apellidos" => "Frusci" ] 28 => array:2 [ "nombre" => "S." "apellidos" => "Mancarella" ] 29 => array:2 [ "nombre" => "G." "apellidos" => "Loche" ] 30 => array:2 [ "nombre" => "G.F." "apellidos" => "Pellicano" ] 31 => array:2 [ "nombre" => "M." "apellidos" => "Berretta" ] 32 => array:2 [ "nombre" => "G." "apellidos" => "Calabria" ] 33 => array:2 [ "nombre" => "L." "apellidos" => "Pietropaolo" ] 34 => array:2 [ "nombre" => "F.G." "apellidos" => "Numis" ] 35 => array:2 [ "nombre" => "N." "apellidos" => "Coppola" ] 36 => array:2 [ "nombre" => "A." "apellidos" => "Corcione" ] 37 => array:2 [ "nombre" => "R." "apellidos" => "Marfella" ] 38 => array:2 [ "nombre" => "L.E." "apellidos" => "Adinolfi" ] 39 => array:2 [ "nombre" => "A." "apellidos" => "Bianco" ] 40 => array:2 [ "nombre" => "F.C." "apellidos" => "Sasso" ] 41 => array:2 [ "nombre" => "I." "apellidos" => "de Sio" ] 42 => array:1 [ "colaborador" => "ECOVITA Group" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043724000564?idApp=UINPBA00004E" "url" => "/25310437/unassign/S2531043724000564/v1_202405280422/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S2531043720300842" "issn" => "25310437" "doi" => "10.1016/j.pulmoe.2020.04.001" "estado" => "S200" "fechaPublicacion" => "2020-04-26" "aid" => "1458" "copyright" => "Sociedade Portuguesa de Pneumologia" "documento" => "simple-article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "dup" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:8 [ "idiomaDefecto" => true "titulo" => "WITHDRAWN: Covid-19: Round and oval areas of ground-glass opacity" "tienePdf" => "en" "tieneTextoCompleto" => 0 "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "W. Schmitt, E. Marchiori" "autores" => array:2 [ 0 => array:2 [ "nombre" => "W." "apellidos" => "Schmitt" ] 1 => array:2 [ "nombre" => "E." "apellidos" => "Marchiori" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043720300842?idApp=UINPBA00004E" "url" => "/25310437/unassign/S2531043720300842/v2_202103160709/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Development of clinical tools to estimate the breathing effort during high-flow oxygen therapy: A multicenter cohort study" "tieneTextoCompleto" => true "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "A. Protti, R. Tonelli, F. Dalla Corte, D.L. Grieco, E. Spinelli, S. Spadaro, D. Piovani, L.S. Menga, G. Schifino, M.L. Vega Pittao, M. Umbrello, G. Cammarota, C.A. Volta, S. Bonovas, M. Cecconi, T. Mauri, E. Clini" "autores" => array:17 [ 0 => array:4 [ "nombre" => "A." "apellidos" => "Protti" "email" => array:1 [ 0 => "alessandro.protti@hunimed.eu" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0001" ] ] ] 1 => array:3 [ "nombre" => "R." "apellidos" => "Tonelli" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0003" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0004" ] ] ] 2 => array:3 [ "nombre" => "F." "apellidos" => "Dalla Corte" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] ] ] 3 => array:3 [ "nombre" => "D.L." "apellidos" => "Grieco" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">f</span>" "identificador" => "aff0006" ] ] ] 4 => array:3 [ "nombre" => "E." "apellidos" => "Spinelli" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">g</span>" "identificador" => "aff0007" ] ] ] 5 => array:3 [ "nombre" => "S." "apellidos" => "Spadaro" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">h</span>" "identificador" => "aff0008" ] ] ] 6 => array:3 [ "nombre" => "D." "apellidos" => "Piovani" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">i</span>" "identificador" => "aff0009" ] ] ] 7 => array:3 [ "nombre" => "L.S." "apellidos" => "Menga" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">f</span>" "identificador" => "aff0006" ] ] ] 8 => array:3 [ "nombre" => "G." "apellidos" => "Schifino" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">j</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">k</span>" "identificador" => "aff0011" ] ] ] 9 => array:3 [ "nombre" => "M.L." "apellidos" => "Vega Pittao" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">j</span>" "identificador" => "aff0010" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">k</span>" "identificador" => "aff0011" ] ] ] 10 => array:3 [ "nombre" => "M." "apellidos" => "Umbrello" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">l</span>" "identificador" => "aff0012" ] ] ] 11 => array:3 [ "nombre" => "G." "apellidos" => "Cammarota" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">m</span>" "identificador" => "aff0013" ] ] ] 12 => array:3 [ "nombre" => "C.A." "apellidos" => "Volta" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">h</span>" "identificador" => "aff0008" ] ] ] 13 => array:3 [ "nombre" => "S." "apellidos" => "Bonovas" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">i</span>" "identificador" => "aff0009" ] ] ] 14 => array:3 [ "nombre" => "M." "apellidos" => "Cecconi" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] ] ] 15 => array:3 [ "nombre" => "T." "apellidos" => "Mauri" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">g</span>" "identificador" => "aff0007" ] ] ] 16 => array:3 [ "nombre" => "E." "apellidos" => "Clini" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0003" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0004" ] ] ] ] "afiliaciones" => array:13 [ 0 => array:3 [ "entidad" => "Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy" "etiqueta" => "a" "identificador" => "aff0001" ] 1 => array:3 [ "entidad" => "Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy" "etiqueta" => "b" "identificador" => "aff0002" ] 2 => array:3 [ "entidad" => "Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy" "etiqueta" => "c" "identificador" => "aff0003" ] 3 => array:3 [ "entidad" => "Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy" "etiqueta" => "d" "identificador" => "aff0004" ] 4 => array:3 [ "entidad" => "Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy" "etiqueta" => "e" "identificador" => "aff0005" ] 5 => array:3 [ "entidad" => "Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy" "etiqueta" => "f" "identificador" => "aff0006" ] 6 => array:3 [ "entidad" => "Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy" "etiqueta" => "g" "identificador" => "aff0007" ] 7 => array:3 [ "entidad" => "Department of Translational Medicine, University of Ferrara, Ferrara, Italy" "etiqueta" => "h" "identificador" => "aff0008" ] 8 => array:3 [ "entidad" => "IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy" "etiqueta" => "i" "identificador" => "aff0009" ] 9 => array:3 [ "entidad" => "Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy" "etiqueta" => "j" "identificador" => "aff0010" ] 10 => array:3 [ "entidad" => "Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy" "etiqueta" => "k" "identificador" => "aff0011" ] 11 => array:3 [ "entidad" => "SC Rianimazioine e Anestesia, ASST Ovest Milanese, Ospedale Civile di Legnano, Legnano, Milan, Italy" "etiqueta" => "l" "identificador" => "aff0012" ] 12 => array:3 [ "entidad" => "Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy" "etiqueta" => "m" "identificador" => "aff0013" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0001" "etiqueta" => "⁎" "correspondencia" => "Corresponding author at: Humanitas University, Pieve Emanuele, Milan, Italy." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1302 "Ancho" => 2917 "Tamanyo" => 179428 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0004" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Calibration plot of observed against predicted outcomes.</p> <p id="spara002" class="elsevierStyleSimplePara elsevierViewall">Panel A shows the calibration plot for the linear regression model for ΔPes (in cmH<span class="elsevierStyleInf">2</span>O) tested on the development population, while Panel B shows the calibration plot for the logistic regression model for breathing efforts with a ΔPes >10 cmH<span class="elsevierStyleInf">2</span>O tested on the development population. Each dot on the plot represents a tenth of the predicted values, each one based on data from 26 patients. The bars represent the 95 % confidence intervals, and the red line is the identity line.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0008">Introduction</span><p id="para0006" class="elsevierStylePara elsevierViewall">Strong breathing effort made by critically ill patients may cause harm in various ways.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a> It can fatigue the respiratory muscles and increase whole-body oxygen consumption and carbon dioxide production,<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> which may be relevant in patients with cardiopulmonary dysfunction. It can cause pulmonary edema, for example, in patients with severe chronic obstructive pulmonary disease undergoing weaning from mechanical ventilation.<a class="elsevierStyleCrossRef" href="#bib0004"><span class="elsevierStyleSup">4</span></a> It might also directly injure the diaphragm and the lungs, but this concept has yet to be validated in humans.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">5</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a> All these reasons suggest that strong breathing effort should be recognized and treated.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0007"><span class="elsevierStyleSup">7</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a> Based on small physiological studies, different interventions may be considered, from titrating the sedation and the ventilatory support to instituting controlled mechanical ventilation with full neuromuscular blockade.<a class="elsevierStyleCrossRefs" href="#bib0009"><span class="elsevierStyleSup">9-13</span></a> Indeed, the primary goal of positive pressure ventilation is to relieve excessive work of breathing.<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a></p><p id="para0007" class="elsevierStylePara elsevierViewall">During spontaneous breathing, inspiratory muscle contractions produce simultaneous deflections of the esophageal pressure (ΔPes), which reflect the magnitude of the effort.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">15</span></a> In healthy subjects, ΔPes is only a few cmH<span class="elsevierStyleInf">2</span>O during quiet breathing but >10–15 cmH<span class="elsevierStyleInf">2</span>O during vigorous exercise or carbon dioxide inhalation.<a class="elsevierStyleCrossRefs" href="#bib0016"><span class="elsevierStyleSup">16-19</span></a> In critically ill patients, the upper limit for a “safe” ΔPes is unknown. Nonetheless, according to experts’ opinions (summarized in Table A.1 in the supplemental digital content),<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">10</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRefs" href="#bib0020"><span class="elsevierStyleSup">20-29</span></a> breathing effort with a ΔPes >10–15 cmH<span class="elsevierStyleInf">2</span>O is probably too strong to be tolerated for a long time.</p><p id="para0008" class="elsevierStylePara elsevierViewall">However, esophageal manometry is not widely available.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">30</span></a> Estimating breathing effort without it is complex, especially in non-intubated patients, when tidal volume and ventilator waveforms cannot help.<a class="elsevierStyleCrossRefs" href="#bib0031"><span class="elsevierStyleSup">31-33</span></a> Doctors mostly rely on their gestalt or overall impression,<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a> which is subjective and prone to inaccuracies. For instance, in a previous study from our group, the efforts of non-intubated critically ill patients were often misclassified:<a class="elsevierStyleCrossRef" href="#bib0022"><span class="elsevierStyleSup">22</span></a> many of those with a ΔPes >10–15 cmH<span class="elsevierStyleInf">2</span>O were considered “normal”, while some of those with a ΔPes ≤10 cmH<span class="elsevierStyleInf">2</span>O were considered “strong” despite their lower ΔPes. Another study reported only fair to moderate agreement among doctors in deciding whether their patients passed a spontaneous breathing trial and could thus be extubated.<a class="elsevierStyleCrossRef" href="#bib0034"><span class="elsevierStyleSup">34</span></a></p><p id="para0009" class="elsevierStylePara elsevierViewall">This study had two objectives. First, to create a model that could estimate ΔPes (i.e., the effort to breathe) in patients who are not intubated and receiving high-flow oxygen therapy. Second, to simplify this model into another one that could predict the likelihood of ΔPes being >10 cmH<span class="elsevierStyleInf">2</span>O (i.e., strong breathing effort).</p></span><span id="sec0002" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0009">Material and methods</span><p id="para0010" class="elsevierStylePara elsevierViewall">In this multicenter cohort study, we combined the data of 273 adult patients from seven prospective studies conducted in our mixed or respiratory Intensive Care Units (ICUs) and described in Tables A.2 and A.3 in the supplemental digital content. One hundred and eight patients were from six completed studies,<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">35-40</span></a> and 165 from an ongoing study (NCT03826797). Most of these studies enrolled patients with acute hypoxemic respiratory failure and without a history of chronic lung disease, acute cardiogenic pulmonary edema, and hemodynamic instability. All the completed studies have been approved by the appropriate Institutional Review Committees.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">35-40</span></a> The ongoing study was approved by the Area Vasta Emilia Nord (AVEN) Ethics Committee in Modena, Italy, in December 2016 under protocol number 266/2016. The present analysis, which includes patients enrolled until the end of 2022, was approved by the same AVEN Ethics Committee in May 2023. Written informed consent was obtained from all the patients.</p><p id="para0011" class="elsevierStylePara elsevierViewall">In all studies, ΔPes was the average of three or more consecutive readings during high-flow oxygen therapy through nasal cannula (HFNC). In one study,<a class="elsevierStyleCrossRef" href="#bib0036"><span class="elsevierStyleSup">36</span></a> data were recorded from the same patients more than once, on the same occasion, but with different gas flows. All repeated measures were averaged so that each patient contributed one data set to the analysis.</p><p id="para0012" class="elsevierStylePara elsevierViewall">We conducted two analyses. In the first analysis, we used multivariable linear regression to develop a model for ΔPes. In the second analysis, we used multivariable logistic regression to develop a model for the risk of ΔPes being >10 cmH<span class="elsevierStyleInf">2</span>O. We validated this model internally and simplified it into a score.</p><p id="para0013" class="elsevierStylePara elsevierViewall">We prepared our manuscript following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a></p><span id="sec0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0010">Model for ΔPes in cmH<span class="elsevierStyleInf">2</span>O</span><p id="para0014" class="elsevierStylePara elsevierViewall">The outcome to be predicted was ΔPes (in cmH<span class="elsevierStyleInf">2</span>O). The candidate predictors were all measured within a few minutes of ΔPes by the same investigators. They included age, sex, diagnosis of the coronavirus disease 2019 (COVID-19), heart rate, mean arterial pressure, respiratory rate, arterial pH (pHa), arterial carbon dioxide tension (PaCO<span class="elsevierStyleInf">2</span>), arterial oxygen tension (PaO<span class="elsevierStyleInf">2</span>), arterial bicarbonate concentration (HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a), arterial base excess concentration (BEa), arterial oxygen saturation (SaO<span class="elsevierStyleInf">2</span>), and arterial tension to the inspiratory fraction of oxygen ratio (PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>). The product term or interaction between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> was also considered based on scientific reasoning.<a class="elsevierStyleCrossRef" href="#bib0042"><span class="elsevierStyleSup">42</span></a> Unfortunately, other potentially relevant predictors, such as the recruitment of accessory muscles or the severity of dyspnea, were unavailable in the dataset. Only 260 patients with complete data were considered for further analysis. The proportion of patients with missing data (5 %) was deemed negligible and may not have yielded significant biases.</p></span><span id="sec0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0011">Statistical analysis methods</span><p id="para01a015" class="elsevierStylePara elsevierViewall">Data are reported as median (Q1-Q3) and count (percentage).</p><p id="para0015" class="elsevierStylePara elsevierViewall">Firstly, we studied the association between each candidate predictor and outcome separately with univariable linear regression. We used fractional polynomial regression analysis to explore potentially meaningful non-linear associations. We selected the most appropriate second-degree function by minimizing deviance in polynomial regression. However, we observed only a slight improvement in the model fit. To maintain simplicity and avoid overfitting, we opted to develop a model based on linear associations between the candidate predictors and the outcome. Afterward, we built a multivariable linear regression model. In cases of high correlation among candidate predictors (i.e., Spearman's rho >│0.80│), we excluded the variable that was least important based on mechanistic reasoning. Predictors were selected using a backward stepwise elimination strategy, with a <span class="elsevierStyleItalic">p</span> < 0.05 at the Wald test as the stopping rule. Based on the residual analysis, the linearity and normality assumptions were met, but the equal variance assumption was not. Therefore, we computed robust standard errors for the regression coefficients. The fit of the model was evaluated both in terms of calibration and overall performance. Calibration was assessed by plotting the observed ΔPes against the predicted ΔPes. In a well-fitting model, the predictions cluster around the 45° diagonal, or identity line, and the slope of the plot is close to 1.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a> Overall performance was evaluated with the adjusted R<span class="elsevierStyleSup">2</span>, which reflects the amount of outcome variability explained by the model adjusted for the number of predictors included.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a></p></span><span id="sec0006" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0013">Model for ΔPes >10 cmH<span class="elsevierStyleInf">2</span>O</span><p id="para0016" class="elsevierStylePara elsevierViewall">We built a multivariable logistic regression model using the same candidate predictors and variable selection technique mentioned previously. The dichotomous outcome to be predicted was strong breathing efforts, defined as those with a ΔPes >10 cmH<span class="elsevierStyleInf">2</span>O as in our previous work.<a class="elsevierStyleCrossRef" href="#bib0022"><span class="elsevierStyleSup">22</span></a> The apparent predictive performance of the model was assessed in terms of calibration, discrimination, and overall performance.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a> Calibration was evaluated by plotting the observed proportion of patients with strong breathing efforts against the predicted risk. In a perfectly calibrated model, this plot has an intercept of 0 and a slope of 1. Discrimination was assessed with the area under the receiver operating characteristics curve (AUROC). This area can range from 0 to 1, where 0.5 indicates random guessing, and 1 indicates perfect discrimination. Overall performance was assessed with the scaled Brier score, computed as 1 – Brier score / Brier score max. It ranges from 0 % to 100 %, with higher values indicating a better-performing model.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a></p></span><span id="sec0007" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0014">Internal model validation</span><p id="para0017" class="elsevierStylePara elsevierViewall">When testing performance, using the same dataset used to develop a model often leads to overly optimistic results. To obtain unbiased estimates, we used a bootstrap resampling technique. Firstly, we repeated the entire modeling process, including variable selection, on 200 bootstrap samples drawn with replacement from the original dataset. Secondly, we computed the optimism of each bootstrap model by comparing its performance in the same bootstrap sample or the original dataset. Finally, we subtracted the average optimism of the 200 bootstrap samples from the initial apparent performance of the model under validation to obtain its optimism-corrected performance.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a></p></span><span id="sec0008" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0015">Model presentation</span><p id="para0018" class="elsevierStylePara elsevierViewall">We created a score by dividing each regression coefficient by the smallest one and produced a table to transform each possible total point score into an outcome probability.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a></p><p id="para0019" class="elsevierStylePara elsevierViewall">All statistical analyses were run with Stata/SE 17.0 (StataCorp LLC; College Station, TX). A two-tailed p-value <0.05 was considered statistically significant.</p><p id="para0020" class="elsevierStylePara elsevierViewall">Other details on methods are presented in the supplementary material.</p></span></span><span id="sec0009" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0016">Results</span><p id="para0021" class="elsevierStylePara elsevierViewall">260 patients were included in the study (<a class="elsevierStyleCrossRef" href="#tbl0001">Table 1</a>). Most of them had a PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> ≤300 mmHg (245 [94 %]) and pneumonia (225 [87 %]). On average, ΔPes was 12 (8–18) cmH<span class="elsevierStyleInf">2</span>O. It was ≤10 (7 [6–9]) cmH<span class="elsevierStyleInf">2</span>O in 107 (41 %) and >10 (16 [13–25]) cmH<span class="elsevierStyleInf">2</span>O in 153 (59 %).</p><elsevierMultimedia ident="tbl0001"></elsevierMultimedia><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0017">Model for ΔPes in cmH<span class="elsevierStyleInf">2</span>O</span><p id="para0022" class="elsevierStylePara elsevierViewall">In univariable linear regression analysis, ΔPes decreased with a diagnosis of COVID-19 but increased with a higher respiratory rate, higher heart rate, and lower PaCO<span class="elsevierStyleInf">2</span>, PaO<span class="elsevierStyleInf">2</span>, HCO3<span class="elsevierStyleSup">−</span>a, BEa, SaO<span class="elsevierStyleInf">2</span>, and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>. It was not strongly associated with age, sex, mean arterial pressure, and pHa. The product term between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> was significant (<a class="elsevierStyleCrossRef" href="#tbl0002">Table 2</a>).</p><elsevierMultimedia ident="tbl0002"></elsevierMultimedia><p id="para0023" class="elsevierStylePara elsevierViewall">In multivariable model development, SaO<span class="elsevierStyleInf">2</span> and HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a were excluded because of collinearity issues with PaO<span class="elsevierStyleInf">2</span> and BEa. Age, sex, heart rate, mean arterial pressure, pHa, PaCO<span class="elsevierStyleInf">2,</span> and PaO<span class="elsevierStyleInf">2</span> were eliminated by backward selection. A diagnosis of COVID-19, BEa (mmol/L), respiratory rate (bpm), and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> (mmHg), and the product term between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> remained in the model (<a class="elsevierStyleCrossRef" href="#tbl0002">Table 2</a>). We found that in patients without COVID-19, ΔPes (in cmH<span class="elsevierStyleInf">2</span>O) can be estimated as 14.25 – 0.52 × BEa + 0.36 × respiratory rate – 0.05 × PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>. In those with COVID-19, ΔPes (in cmH<span class="elsevierStyleInf">2</span>O) can be estimated as 3.52 – 0.52 × BEa + 0.36 × respiratory rate – 0.01 × PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>. The calibration slope was 1, and the adjusted R<span class="elsevierStyleSup">2</span> was 0.39 (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a> and Fig. A.1).</p><elsevierMultimedia ident="fig0001"></elsevierMultimedia></span><span id="sec0011" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0018">Model for ΔPes >10 cmH<span class="elsevierStyleInf">2</span>O</span><p id="para0024" class="elsevierStylePara elsevierViewall">On univariable logistic regression analysis, variables associated with the risk of strong breathing efforts were the same as those associated with ΔPes, except for heart rate and the product term between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>, which were not significant (<a class="elsevierStyleCrossRef" href="#tbl0003">Table 3</a>).</p><elsevierMultimedia ident="tbl0003"></elsevierMultimedia><p id="para0025" class="elsevierStylePara elsevierViewall">During multivariable model development, BEa (mmol/L), respiratory rate (bpm), and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> (mmHg) remained in the model while all other variables, including a diagnosis of COVID-19 and the product term between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>, were removed (<a class="elsevierStyleCrossRef" href="#tbl0003">Table 3</a>). We found that the individual probability of outcome can be calculated as 1 / {1 + exp [– (0.461 – 0.145 × BEa + 0.075 × respiratory rate – 0.014 × PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>)]}. The corresponding percentage risk can be obtained by multiplying this probability by 100.</p><p id="para0026" class="elsevierStylePara elsevierViewall">When the fit of the model was tested on the same data set used to develop it (apparent performance), the calibration intercept was −0.00 (−0.29 to 0.29), the calibration slope was 1.00 (0.72 to 1.28), the AUROC was 0.79 (95 % CI, 0.73–0.85), and the scaled Brier score was 29 % (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a>). On internal validation (optimism-corrected performance), the calibration intercept was 0.00 (−0.33 to 0.33), the calibration slope was 0.85 (0.60 to 1.12), the AUROC was 0.76 (0.71–0.81), and the scaled Brier score was 23 % (Fig. A.2). The prediction model was simplified into the following score: 33.7 – 10.6 × BEa + 5.5 × respiratory rate – PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>. The outcome probabilities of different total points scores are reported in Fig. A.3.</p></span></span><span id="sec0012" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0019">Discussion</span><p id="para0027" class="elsevierStylePara elsevierViewall">We developed two models that can estimate the breathing effort (ΔPes in cmH<span class="elsevierStyleInf">2</span>O) or the risk of strong efforts (probability of ΔPes being >10 cmH<span class="elsevierStyleInf">2</span>O) in patients with high-flow oxygen therapy. These models are based on a few variables readily available in an ICU, and yet their performance was fairly good, which makes them suitable for further evaluation.</p><p id="para0028" class="elsevierStylePara elsevierViewall">Research on how to estimate the breathing effort in patients has been primarily limited to those receiving invasive mechanical ventilation. There is very little evidence on this topic for non-intubated patients. Therefore, doctors evaluating non-intubated patients rely mostly on their clinical impression.<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a> They look for signs that suggest an elevated effort, such as diaphoresis, hypoxia, tachycardia, tachypnea, altered mentation, shortness of breath, and recruitment of accessory and expiratory muscles. However, these signs are poorly defined,<a class="elsevierStyleCrossRef" href="#bib0044"><span class="elsevierStyleSup">44</span></a> and their relative importance is unclear. Reaching a definite conclusion when they conflict with each other can be difficult. Furthermore, none of these signs alone is accurate, particularly in critically ill patients, due to many confounding factors. On the other hand, doctors also rely on criteria derived from their experience, which are inherently vague and arbitrary.<a class="elsevierStyleCrossRef" href="#bib0014"><span class="elsevierStyleSup">14</span></a> This often leads to clinical decisions being based more on implicit and subjective than explicit and objective rules.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">45</span></a> Therefore, it is not surprising that doctors may disagree when rating the breathing effort made by their patients, or when debating whether to proceed to intubation.<a class="elsevierStyleCrossRef" href="#bib0022"><span class="elsevierStyleSup">22</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0034"><span class="elsevierStyleSup">34</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRefs" href="#bib0046"><span class="elsevierStyleSup">46-49</span></a></p><span id="sec0013" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0020">Strengths of our models and their potential clinical applications</span><p id="para0029" class="elsevierStylePara elsevierViewall">This was our first attempt at filling this gap in research. We developed two simple but composite models to estimate the effort of breathing during high-flow oxygen therapy when esophageal manometry is unavailable. One model predicts the actual ΔPes while the other predicts the risk of ΔPes being >10 cmH<span class="elsevierStyleInf">2</span>O. The association between the selected variables and breathing effort is biologically plausible.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a> Other variables, such as PaCO<span class="elsevierStyleInf">2</span>, had some predictive value on their own but did not ameliorate model performance. We use the acronym BREF to refer to these models. BREF stands for BReathing EFfort but also reminds the common predictors: BEa (B), respiratory rate (RE), and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> (F). Doctors may use these models, as well as any updated version, as an aid for their decision-making process. For instance, to determine whether a patient requires admission to the intensive care unit, how often he or she should be reassessed, and whether to increase ventilatory support or proceed to intubation. Those with limited experience or working outside the ICU may find them particularly helpful.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">50</span></a> In other fields of medicine, clinical prediction rules are used this way.<a class="elsevierStyleCrossRef" href="#bib0051"><span class="elsevierStyleSup">51</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0052"><span class="elsevierStyleSup">52</span></a> Results may be interpreted as follows: breathing efforts with ΔPes up to 10 cmH<span class="elsevierStyleInf">2</span>O are probably safe; those with ΔPes from 11 to 15 cmH<span class="elsevierStyleInf">2</span>O warrant close monitoring as they can lead to fatigue; those with ΔPes higher than 15 to 20 cmH<span class="elsevierStyleInf">2</span>O should not be tolerated for long. These values reflect our current best practices and may be revised as new knowledge becomes available.</p></span><span id="sec0014" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0021">Limitations of our models and implications for future research</span><p id="para0030" class="elsevierStylePara elsevierViewall">This work also has several limitations that need to be addressed. Firstly, our models require performing an arterial blood gas analysis, which is invasive and resource-consuming. Secondly, the performance was only moderately good and needs to be validated in a new study population.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a> However, the models may be updated into a second version, including other predictors, and this will hopefully improve their accuracy. Thirdly, the clinical usefulness of any prediction model depends on the accuracy of the unaided doctor and the consequences of decisions based on it, which are yet to be determined. Fourthly, these models may not be suitable for patients excluded from our study population, including those with acute cardiogenic pulmonary edema or a history of chronic lung disease. Lastly, having a dichotomous outcome can facilitate the interpretation of the results but with many drawbacks.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a> For instance, it carries the risk of characterizing patients with a ΔPes slightly lower or higher than 10 cmH<span class="elsevierStyleInf">2</span>O as being very different rather than very similar. The exact threshold of ΔPes that separates normal and strong efforts, if such a threshold exists, remains unknown. Various suggestions have been proposed, ranging from 8 to 18 cmH<span class="elsevierStyleInf">2</span>O (see Table A.1), but none of them is supported by solid evidence. Also, it may cause a loss of information, which may explain why a diagnosis of COVID-19 was associated with ΔPes at linear regression analysis but not with strong breathing efforts at logistic regression analysis. For these reasons, dichotomizing a continuous outcome is generally discouraged.<a class="elsevierStyleCrossRef" href="#bib0041"><span class="elsevierStyleSup">41</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0043"><span class="elsevierStyleSup">43</span></a> Hence, our model for ΔPes in cmH<span class="elsevierStyleInf">2</span>O should be preferred over the other.</p></span></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0022">Conclusions</span><p id="para0031" class="elsevierStylePara elsevierViewall">We have developed two models to estimate the breathing effort of critically ill patients on high-flow oxygen therapy. Our initial findings are promising and suggest that these models merit further evaluation. This may include testing them on a new population, updating them, and determining their clinical usefulness.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:9 [ 0 => array:3 [ "identificador" => "xres2148525" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abss0001" "titulo" => "Introduction and objectives" ] 1 => array:2 [ "identificador" => "abss0002" "titulo" => "Patients and Methods" ] 2 => array:2 [ "identificador" => "abss0003" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abss0004" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1823408" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xpalclavsec1823409" "titulo" => "Abbreviations" ] 3 => array:2 [ "identificador" => "sec0001" "titulo" => "Introduction" ] 4 => array:3 [ "identificador" => "sec0002" "titulo" => "Material and methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0003" "titulo" => "Model for ΔPes in cmHO" ] 1 => array:2 [ "identificador" => "sec0004" "titulo" => "Statistical analysis methods" ] 2 => array:2 [ "identificador" => "sec0006" "titulo" => "Model for ΔPes >10 cmHO" ] 3 => array:2 [ "identificador" => "sec0007" "titulo" => "Internal model validation" ] 4 => array:2 [ "identificador" => "sec0008" "titulo" => "Model presentation" ] ] ] 5 => array:3 [ "identificador" => "sec0009" "titulo" => "Results" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0010" "titulo" => "Model for ΔPes in cmHO" ] 1 => array:2 [ "identificador" => "sec0011" "titulo" => "Model for ΔPes >10 cmHO" ] ] ] 6 => array:3 [ "identificador" => "sec0012" "titulo" => "Discussion" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0013" "titulo" => "Strengths of our models and their potential clinical applications" ] 1 => array:2 [ "identificador" => "sec0014" "titulo" => "Limitations of our models and implications for future research" ] ] ] 7 => array:2 [ "identificador" => "sec0015" "titulo" => "Conclusions" ] 8 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2024-03-05" "fechaAceptado" => "2024-04-22" "PalabrasClave" => array:1 [ "en" => array:2 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1823408" "palabras" => array:6 [ 0 => "Esophageal pressure" 1 => "Breathing effort" 2 => "High-flow oxygen therapy" 3 => "Acute respiratory failure" 4 => "Prediction model" 5 => "BREF" ] ] 1 => array:4 [ "clase" => "abr" "titulo" => "Abbreviations" "identificador" => "xpalclavsec1823409" "palabras" => array:13 [ 0 => "AUROC" 1 => "AVEN" 2 => "BEa" 3 => "COVID-19" 4 => "ΔPes" 5 => "FiO<span class="elsevierStyleInf">2</span>" 6 => "HFNC" 7 => "ICU" 8 => "PaCO<span class="elsevierStyleInf">2</span>" 9 => "PaO<span class="elsevierStyleInf">2</span>" 10 => "pHa" 11 => "SaO<span class="elsevierStyleInf">2</span>" 12 => "TRIPOD" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abss0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0002">Introduction and objectives</span><p id="spara009" class="elsevierStyleSimplePara elsevierViewall">Quantifying breathing effort in non-intubated patients is important but difficult. We aimed to develop two models to estimate it in patients treated with high-flow oxygen therapy.</p></span> <span id="abss0002" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0003">Patients and Methods</span><p id="spara010" class="elsevierStyleSimplePara elsevierViewall">We analyzed the data of 260 patients from previous studies who received high-flow oxygen therapy. Their breathing effort was measured as the maximal deflection of esophageal pressure (ΔPes). We developed a multivariable linear regression model to estimate ΔPes (in cmH<span class="elsevierStyleInf">2</span>O) and a multivariable logistic regression model to predict the risk of ΔPes being >10 cmH<span class="elsevierStyleInf">2</span>O. Candidate predictors included age, sex, diagnosis of the coronavirus disease 2019 (COVID-19), respiratory rate, heart rate, mean arterial pressure, the results of arterial blood gas analysis, including base excess concentration (BEa) and the ratio of arterial tension to the inspiratory fraction of oxygen (PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>), and the product term between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>.</p></span> <span id="abss0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0004">Results</span><p id="spara011" class="elsevierStyleSimplePara elsevierViewall">We found that ΔPes can be estimated from the presence or absence of COVID-19, BEa, respiratory rate, PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2,</span> and the product term between COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2.</span> The adjusted R<span class="elsevierStyleSup">2</span> was 0.39. The risk of ΔPes being >10 cmH<span class="elsevierStyleInf">2</span>O can be predicted from BEa, respiratory rate, and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>. The area under the receiver operating characteristic curve was 0.79 (0.73–0.85). We called these two models BREF, where BREF stands for BReathing EFfort and the three common predictors: BEa (B), respiratory rate (RE), and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> (F).</p></span> <span id="abss0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0005">Conclusions</span><p id="spara012" class="elsevierStyleSimplePara elsevierViewall">We developed two models to estimate the breathing effort of patients on high-flow oxygen therapy. Our initial findings are promising and suggest that these models merit further evaluation.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abss0001" "titulo" => "Introduction and objectives" ] 1 => array:2 [ "identificador" => "abss0002" "titulo" => "Patients and Methods" ] 2 => array:2 [ "identificador" => "abss0003" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abss0004" "titulo" => "Conclusions" ] ] ] ] "NotaPie" => array:1 [ 0 => array:1 [ "nota" => "<p class="elsevierStyleNotepara" id="notep0001">Prior presentations: Some results of this work have been presented at the 33rd SMART Meeting Anesthesia, Resuscitation, and Intensive Care held on May 4th-6th, 2023, in Milan, Italy, and at the 1st Jordi Mancebo PLUG Physiology Symposium held on September 28th-30th, 2023, in Barcelona, Spain.</p>" ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="para0032a" class="elsevierStylePara elsevierViewall"><elsevierMultimedia ident="ecom0001"></elsevierMultimedia></p>" "etiqueta" => "Appendix" "titulo" => "Supplementary materials" "identificador" => "sec0019" ] ] ] ] "multimedia" => array:5 [ 0 => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1302 "Ancho" => 2917 "Tamanyo" => 179428 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0004" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Calibration plot of observed against predicted outcomes.</p> <p id="spara002" class="elsevierStyleSimplePara elsevierViewall">Panel A shows the calibration plot for the linear regression model for ΔPes (in cmH<span class="elsevierStyleInf">2</span>O) tested on the development population, while Panel B shows the calibration plot for the logistic regression model for breathing efforts with a ΔPes >10 cmH<span class="elsevierStyleInf">2</span>O tested on the development population. Each dot on the plot represents a tenth of the predicted values, each one based on data from 26 patients. The bars represent the 95 % confidence intervals, and the red line is the identity line.</p>" ] ] 1 => array:8 [ "identificador" => "tbl0001" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spara004" class="elsevierStyleSimplePara elsevierViewall">Continuous variables are presented as medians (Q1-Q3). Categorical variables are reported as absolute numbers and percentages. BEa: arterial base excess concentration. COVID-19: novel coronavirus disease 2019. ΔPes: maximal inspiratory deflection of the esophageal pressure. FiO<span class="elsevierStyleInf">2</span>: inspiratory fraction of oxygen. HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a: arterial bicarbonate concentration. HFNC: high-flow nasal cannula (oxygen therapy). ICU: Intensive Care Unit. PaCO<span class="elsevierStyleInf">2</span>: arterial carbon dioxide tension. PaO<span class="elsevierStyleInf">2</span>: arterial oxygen tension. PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>: arterial tension to the inspiratory fraction of oxygen ratio. pHa: arterial pH. SaO<span class="elsevierStyleInf">2</span>: arterial oxygen saturation.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0001"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0002"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Study population \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0003"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Subjects, n \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0004"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">260 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0005"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Variables recorded at ICU admission \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0006"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0007"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Age, years \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0008"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">67 (56–75) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0009"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Male/Female, n \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0010"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">174/86 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0011"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">With pneumonia, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0012"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">225 (87) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0013"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><span class="elsevierStyleHsp" style=""></span>Other than COVID-19 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0014"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">143 (55) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0015"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><span class="elsevierStyleHsp" style=""></span>COVID-19 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0016"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">82 (32) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0017"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Variables recorded on the day of the study \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0018"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0019"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Time from ICU admission to study, days \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0020"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0 (0–1) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0021"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">HFNC settings \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0022"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0023"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><span class="elsevierStyleHsp" style=""></span>FiO<span class="elsevierStyleInf">2</span>, % \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0024"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">50 (45–65) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0025"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><span class="elsevierStyleHsp" style=""></span>Gas flow, L/min \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0026"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">60 (50–60) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0027"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">ΔPes, cmH<span class="elsevierStyleInf">2</span>O \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0028"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">12 (8–18) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0029"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Respiratory rate, bpm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0030"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">26 (22–30) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0031"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Heart rate, bpm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0032"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">91 (79–103) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0033"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Mean arterial pressure, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0034"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">83 (73–93) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0035"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">pHa \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0036"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">7.46 (7.44–7.48) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0037"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">PaCO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0038"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">34 (31–36) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0039"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">PaO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0040"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">69 (61–79) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0041"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0042"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">23 (22–24) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0043"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">BEa, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0044"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">−1 (−2–1) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0045"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">SaO<span class="elsevierStyleInf">2</span>, % \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0046"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">94 (93–96) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0047"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0048"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">135 (100–184) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0049"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Variable recorded at ICU discharge \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0050"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0051"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">ICU mortality, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0052"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">54 (21) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3540555.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spara003" class="elsevierStyleSimplePara elsevierViewall">Main characteristics of the study population.</p>" ] ] 2 => array:8 [ "identificador" => "tbl0002" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0002" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spara006" class="elsevierStyleSimplePara elsevierViewall">Univariable and multivariable linear regression analysis to predict ΔPes (in cmH<span class="elsevierStyleInf">2</span>O) during high-flow nasal cannula oxygen therapy. BEa: arterial base excess concentration. β: regression coefficient. CI: confidence interval. COVID-19: novel coronavirus disease 2019. ΔPes: maximal inspiratory deflection of the esophageal pressure. FiO<span class="elsevierStyleInf">2</span>: inspiratory fraction of oxygen. HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a: arterial bicarbonate concentration. PaCO<span class="elsevierStyleInf">2</span>: arterial carbon dioxide tension. PaO<span class="elsevierStyleInf">2</span>: arterial oxygen tension. PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>: arterial tension to the inspiratory fraction of oxygen ratio. pHa: arterial pH. SaO<span class="elsevierStyleInf">2</span>: arterial oxygen saturation.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0053"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0054"></a><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_colgroup " colspan="3" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Univariable analysis</th><a name="en0055"></a><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_colgroup " colspan="3" align="center" valign="top" scope="col" style="border-bottom: 2px solid black">Multivariable analysis</th></tr><tr title="table-row"><a name="en0056"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0057"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">β \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0058"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">95%-CI \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0059"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">p-value \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0060"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">β \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0061"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">95%-CI \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0062"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">p-value \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0063"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Age, years \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0064"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.067 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0065"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.016 to 0.151 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0066"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.114 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0067"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0068"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0069"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0070"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Sex, ref.: male \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0071"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.881 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0072"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1.458 to 3.219 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0073"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.459 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0074"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0075"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0076"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0077"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">With COVID-19, ref.: no \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0078"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−2.731 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0079"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−5.098 to −0.364 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0080"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.024 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0081"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−10.734 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0082"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−16.442 to −5.025 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0083"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0084"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Heart rate, bpm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0085"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.082 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0086"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.025 to 0.140 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0087"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.005 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0088"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0089"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0090"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0091"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Mean arterial pressure, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0092"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.060 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0093"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.128 to 0.009 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0094"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.089 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0095"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0096"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0097"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0098"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Respiratory rate, bpm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0099"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.583 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0100"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.452 to 0.714 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0101"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0102"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.362 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0103"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.233 to 0.491 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0104"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0105"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">pHa, 0.1 unit \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0106"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.814 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0107"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−3.161 to 1.533 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0108"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.495 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0109"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0110"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0111"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0112"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">PaCO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0113"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.332 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0114"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.552 to −0.112 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0115"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.003 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0116"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0117"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0118"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0119"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">PaO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0120"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.108 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0121"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.161 to −0.055 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0122"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0123"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0124"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0125"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0126"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0127"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.576 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0128"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.883 to −0.268 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0129"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0130"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0131"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0132"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0133"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">BEa, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0134"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.538 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0135"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.836 to −0.240 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0136"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0137"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.520 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0138"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.767 to −0.272 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0139"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0140"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">SaO<span class="elsevierStyleInf">2</span>, % \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0141"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.696 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0142"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−1.093 to −0.299 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0143"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0144"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0145"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0146"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0147"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0148"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.055 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0149"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.069 to −0.041 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0150"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0151"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.054 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0152"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.068 to −0.040 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0153"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0154"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">COVID-19 and PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0155"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.021 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0156"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.037 to −0.004 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0157"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.013 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0158"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.048 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0159"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.009 to 0.088 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0160"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.016 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3540556.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spara005" class="elsevierStyleSimplePara elsevierViewall">Linear regression analysis to predict ΔPes.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0003" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0003" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spara008" class="elsevierStyleSimplePara elsevierViewall">Univariable and multivariable logistic regression analysis to predict the risk of breathing efforts with a ΔPes >10 cmH<span class="elsevierStyleInf">2</span>O during high-flow nasal cannula oxygen therapy. BEa: arterial base excess concentration. β: regression coefficient. COVID-19: novel coronavirus disease 2019. ΔPes: maximal inspiratory deflection of the esophageal pressure. FiO<span class="elsevierStyleInf">2</span>: inspiratory fraction of oxygen. HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a: arterial bicarbonate concentration. PaCO<span class="elsevierStyleInf">2</span>: arterial carbon dioxide tension. PaO<span class="elsevierStyleInf">2</span>: arterial oxygen tension. PaO<span class="elsevierStyleInf">2</span>:FiO<span class="elsevierStyleInf">2</span>: arterial tension to the inspiratory fraction of oxygen ratio. pHa: arterial pH. SaO<span class="elsevierStyleInf">2</span>: arterial oxygen saturation.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0161"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0162"></a><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_colgroup " colspan="3" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Univariable analysis</th><a name="en0163"></a><th class="td-with-role" title="\n \t\t\t\t\ttable-head\n \t\t\t\t ; entry_with_role_colgroup " colspan="3" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Multivariable analysis</th></tr><tr title="table-row"><a name="en0164"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0165"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">β \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0166"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">95%-CI \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0167"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">p-value \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0168"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">β \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0169"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">95%-CI \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0170"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">p-value \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0171"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Age, years \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0172"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.011 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0173"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.008 to 0.030 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0174"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.242 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0175"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0176"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0177"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0178"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Sex, ref.: male \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0179"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.167 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0180"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.352 to 0.686 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0181"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.529 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0182"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0183"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0184"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0185"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">With COVID-19, ref.: no \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0186"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.747 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0187"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.188 to 1.307 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0188"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.009 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0189"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0190"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0191"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0192"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Heart rate, bpm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0193"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.006 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0194"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.007 to 0.019 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0195"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.352 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0196"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0197"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0198"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0199"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Mean arterial pressure, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0200"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.007 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0201"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.009 to 0.022 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0202"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.386 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0203"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0204"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0205"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0206"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Respiratory rate, bpm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0207"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.116 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0208"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.071 to 0.161 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0209"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0210"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.075 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0211"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.028 to 0.122 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0212"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.002 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0213"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">pHa, 0.1 unit \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0214"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.026 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0215"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.496 to 0.548 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0216"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.923 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0217"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0218"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0219"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0220"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">PaCO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0221"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.080 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0222"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.132 to −0.027 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0223"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.003 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0224"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0225"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0226"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0227"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">PaO<span class="elsevierStyleInf">2</span>, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0228"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.026 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0229"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.041 to −0.011 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0230"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.001 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0231"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0232"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0233"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0234"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">HCO<span class="elsevierStyleInf">3</span><span class="elsevierStyleSup">−</span>a, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0235"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="char" valign="\n \t\t\t\t\ttop\n \t\t\t\t">−0.126 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0236"></a><td class="td" title="\n \t\t\t\t\ttable-entry