array:23 [
"pii" => "S2531043723000570"
"issn" => "25310437"
"doi" => "10.1016/j.pulmoe.2023.03.003"
"estado" => "S300"
"fechaPublicacion" => "2023-11-01"
"aid" => "1858"
"copyright" => "Sociedade Portuguesa de Pneumologia"
"copyrightAnyo" => "2023"
"documento" => "simple-article"
"crossmark" => 1
"subdocumento" => "dis"
"cita" => "Pulmonol. 2023;29:455-6"
"abierto" => array:3 [
"ES" => false
"ES2" => false
"LATM" => false
]
"gratuito" => false
"lecturas" => array:1 [
"total" => 0
]
"itemSiguiente" => array:18 [
"pii" => "S2531043722002604"
"issn" => "25310437"
"doi" => "10.1016/j.pulmoe.2022.11.002"
"estado" => "S300"
"fechaPublicacion" => "2023-11-01"
"aid" => "1819"
"copyright" => "Sociedade Portuguesa de Pneumologia"
"documento" => "article"
"crossmark" => 1
"subdocumento" => "fla"
"cita" => "Pulmonol. 2023;29:457-68"
"abierto" => array:3 [
"ES" => false
"ES2" => false
"LATM" => false
]
"gratuito" => false
"lecturas" => array:1 [
"total" => 0
]
"en" => array:12 [
"idiomaDefecto" => true
"cabecera" => "<span class="elsevierStyleTextfn">Original article</span>"
"titulo" => "Ventilatory associated barotrauma in COVID-19 patients: A multicenter observational case control study (COVI-MIX-study)"
"tienePdf" => "en"
"tieneTextoCompleto" => "en"
"tieneResumen" => "en"
"paginas" => array:1 [
0 => array:2 [
"paginaInicial" => "457"
"paginaFinal" => "468"
]
]
"contieneResumen" => array:1 [
"en" => true
]
"contieneTextoCompleto" => array:1 [
"en" => true
]
"contienePdf" => array:1 [
"en" => true
]
"resumenGrafico" => array:2 [
"original" => 0
"multimedia" => array:8 [
"identificador" => "fig0001"
"etiqueta" => "Fig. 1"
"tipo" => "MULTIMEDIAFIGURA"
"mostrarFloat" => true
"mostrarDisplay" => false
"figura" => array:1 [
0 => array:4 [
"imagen" => "gr1.jpeg"
"Alto" => 1330
"Ancho" => 2417
"Tamanyo" => 134286
]
]
"detalles" => array:1 [
0 => array:3 [
"identificador" => "alt0001"
"detalle" => "Fig "
"rol" => "short"
]
]
"descripcion" => array:1 [
"en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Study flow chart.</p>"
]
]
]
"autores" => array:1 [
0 => array:2 [
"autoresLista" => "Luigi Vetrugno, Nadia Castaldo, Alberto Fantin, Cristian Deana, Andrea Cortegiani, Federico Longhini, Francesco Forfori, Gianmaria Cammarota, Domenico Luca Grieco, Miriam Isola, Paolo Navalesi, Salvatore Maurizio Maggiore, Matteo Bassetti, Alfredo Chetta, Marco Confalonieri, Maria De Martino, Giovanni Ferrari, Daniela Francisi, Roberto Luzzati, Simone Meini, Mariano Scozzafava, Emanuela Sozio, Carlo Tascini, Flavio Bassi, Vincenzo Patruno, Edoardo De Robertis, Chiara Aldieri, Lorenzo Ball, Elisa Baratella, Michele Bartoletti, Annalisa Boscolo, Barbara Burgazzi, Vito Catalanotti, Paola Confalonieri, Silvia Corcione, Francesco Giuseppe De Rosa, Alessandro De Simoni, Valerio Del Bono, Roberta Di Tria, Sara Forlani, Daniele Roberto Giacobbe, Bianca Granozzi, Laura Labate, Sara Lococo, Tommaso Lupia, Carola Matellon, Sara Mehrabi, Sabrina Morosi, Silvia Mongodi, Maddalena Mura, Stefano Nava, Riccardo Pol, Tommaso Pettenuzzo, Nguyen Hoang Quyen, Carolina Rescigno, Elda Righi, Barbara Ruaro, Francesco Salton, Silvia Scabini, Angelo Scarda, Marcella Sibani, Evelina Tacconelli, Gennaro Tartaglione, Beatrice Tazza, Eleonora Vania, Pierluigi Viale, Andrea Vianello, Alessandro Visentin, Umberto Zuccon, Francesco Meroi, Danilo Buonsenso"
"autores" => array:72 [
0 => array:2 [
"nombre" => "Luigi"
"apellidos" => "Vetrugno"
]
1 => array:2 [
"nombre" => "Nadia"
"apellidos" => "Castaldo"
]
2 => array:2 [
"nombre" => "Alberto"
"apellidos" => "Fantin"
]
3 => array:2 [
"nombre" => "Cristian"
"apellidos" => "Deana"
]
4 => array:2 [
"nombre" => "Andrea"
"apellidos" => "Cortegiani"
]
5 => array:2 [
"nombre" => "Federico"
"apellidos" => "Longhini"
]
6 => array:2 [
"nombre" => "Francesco"
"apellidos" => "Forfori"
]
7 => array:2 [
"nombre" => "Gianmaria"
"apellidos" => "Cammarota"
]
8 => array:2 [
"nombre" => "Domenico Luca"
"apellidos" => "Grieco"
]
9 => array:2 [
"nombre" => "Miriam"
"apellidos" => "Isola"
]
10 => array:2 [
"nombre" => "Paolo"
"apellidos" => "Navalesi"
]
11 => array:2 [
"nombre" => "Salvatore Maurizio"
"apellidos" => "Maggiore"
]
12 => array:2 [
"nombre" => "Matteo"
"apellidos" => "Bassetti"
]
13 => array:2 [
"nombre" => "Alfredo"
"apellidos" => "Chetta"
]
14 => array:2 [
"nombre" => "Marco"
"apellidos" => "Confalonieri"
]
15 => array:2 [
"nombre" => "Maria"
"apellidos" => "De Martino"
]
16 => array:2 [
"nombre" => "Giovanni"
"apellidos" => "Ferrari"
]
17 => array:2 [
"nombre" => "Daniela"
"apellidos" => "Francisi"
]
18 => array:2 [
"nombre" => "Roberto"
"apellidos" => "Luzzati"
]
19 => array:2 [
"nombre" => "Simone"
"apellidos" => "Meini"
]
20 => array:2 [
"nombre" => "Mariano"
"apellidos" => "Scozzafava"
]
21 => array:2 [
"nombre" => "Emanuela"
"apellidos" => "Sozio"
]
22 => array:2 [
"nombre" => "Carlo"
"apellidos" => "Tascini"
]
23 => array:2 [
"nombre" => "Flavio"
"apellidos" => "Bassi"
]
24 => array:2 [
"nombre" => "Vincenzo"
"apellidos" => "Patruno"
]
25 => array:1 [
"colaborador" => "the Italian COVI-MIX Study Group"
]
26 => array:2 [
"nombre" => "Edoardo"
"apellidos" => "De Robertis"
]
27 => array:2 [
"nombre" => "Chiara"
"apellidos" => "Aldieri"
]
28 => array:2 [
"nombre" => "Lorenzo"
"apellidos" => "Ball"
]
29 => array:2 [
"nombre" => "Elisa"
"apellidos" => "Baratella"
]
30 => array:2 [
"nombre" => "Michele"
"apellidos" => "Bartoletti"
]
31 => array:2 [
"nombre" => "Annalisa"
"apellidos" => "Boscolo"
]
32 => array:2 [
"nombre" => "Barbara"
"apellidos" => "Burgazzi"
]
33 => array:2 [
"nombre" => "Vito"
"apellidos" => "Catalanotti"
]
34 => array:2 [
"nombre" => "Paola"
"apellidos" => "Confalonieri"
]
35 => array:2 [
"nombre" => "Silvia"
"apellidos" => "Corcione"
]
36 => array:2 [
"nombre" => "Francesco Giuseppe"
"apellidos" => "De Rosa"
]
37 => array:2 [
"nombre" => "Alessandro"
"apellidos" => "De Simoni"
]
38 => array:2 [
"nombre" => "Valerio Del"
"apellidos" => "Bono"
]
39 => array:2 [
"nombre" => "Roberta Di"
"apellidos" => "Tria"
]
40 => array:2 [
"nombre" => "Sara"
"apellidos" => "Forlani"
]
41 => array:2 [
"nombre" => "Daniele Roberto"
"apellidos" => "Giacobbe"
]
42 => array:2 [
"nombre" => "Bianca"
"apellidos" => "Granozzi"
]
43 => array:2 [
"nombre" => "Laura"
"apellidos" => "Labate"
]
44 => array:2 [
"nombre" => "Sara"
"apellidos" => "Lococo"
]
45 => array:2 [
"nombre" => "Tommaso"
"apellidos" => "Lupia"
]
46 => array:2 [
"nombre" => "Carola"
"apellidos" => "Matellon"
]
47 => array:2 [
"nombre" => "Sara"
"apellidos" => "Mehrabi"
]
48 => array:2 [
"nombre" => "Sabrina"
"apellidos" => "Morosi"
]
49 => array:2 [
"nombre" => "Silvia"
"apellidos" => "Mongodi"
]
50 => array:2 [
"nombre" => "Maddalena"
"apellidos" => "Mura"
]
51 => array:2 [
"nombre" => "Stefano"
"apellidos" => "Nava"
]
52 => array:2 [
"nombre" => "Riccardo"
"apellidos" => "Pol"
]
53 => array:2 [
"nombre" => "Tommaso"
"apellidos" => "Pettenuzzo"
]
54 => array:2 [
"nombre" => "Nguyen Hoang"
"apellidos" => "Quyen"
]
55 => array:2 [
"nombre" => "Carolina"
"apellidos" => "Rescigno"
]
56 => array:2 [
"nombre" => "Elda"
"apellidos" => "Righi"
]
57 => array:2 [
"nombre" => "Barbara"
"apellidos" => "Ruaro"
]
58 => array:2 [
"nombre" => "Francesco"
"apellidos" => "Salton"
]
59 => array:2 [
"nombre" => "Silvia"
"apellidos" => "Scabini"
]
60 => array:2 [
"nombre" => "Angelo"
"apellidos" => "Scarda"
]
61 => array:2 [
"nombre" => "Marcella"
"apellidos" => "Sibani"
]
62 => array:2 [
"nombre" => "Evelina"
"apellidos" => "Tacconelli"
]
63 => array:2 [
"nombre" => "Gennaro"
"apellidos" => "Tartaglione"
]
64 => array:2 [
"nombre" => "Beatrice"
"apellidos" => "Tazza"
]
65 => array:2 [
"nombre" => "Eleonora"
"apellidos" => "Vania"
]
66 => array:2 [
"nombre" => "Pierluigi"
"apellidos" => "Viale"
]
67 => array:2 [
"nombre" => "Andrea"
"apellidos" => "Vianello"
]
68 => array:2 [
"nombre" => "Alessandro"
"apellidos" => "Visentin"
]
69 => array:2 [
"nombre" => "Umberto"
"apellidos" => "Zuccon"
]
70 => array:2 [
"nombre" => "Francesco"
"apellidos" => "Meroi"
]
71 => array:2 [
"nombre" => "Danilo"
"apellidos" => "Buonsenso"
]
]
]
]
]
"idiomaDefecto" => "en"
"EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043722002604?idApp=UINPBA00004E"
"url" => "/25310437/0000002900000006/v3_202311162326/S2531043722002604/v3_202311162326/en/main.assets"
]
"itemAnterior" => array:18 [
"pii" => "S2531043723000909"
"issn" => "25310437"
"doi" => "10.1016/j.pulmoe.2023.04.008"
"estado" => "S300"
"fechaPublicacion" => "2023-11-01"
"aid" => "1871"
"copyright" => "Sociedade Portuguesa de Pneumologia"
"documento" => "simple-article"
"crossmark" => 1
"subdocumento" => "dis"
"cita" => "Pulmonol. 2023;29:452-4"
"abierto" => array:3 [
"ES" => false
"ES2" => false
"LATM" => false
]
"gratuito" => false
"lecturas" => array:1 [
"total" => 0
]
"en" => array:9 [
"idiomaDefecto" => true
"cabecera" => "<span class="elsevierStyleTextfn">Comment</span>"
"titulo" => "The public health impact of e-cigarette use: Revisiting Geoffrey Rose's prevention strategies"
"tienePdf" => "en"
"tieneTextoCompleto" => "en"
"paginas" => array:1 [
0 => array:2 [
"paginaInicial" => "452"
"paginaFinal" => "454"
]
]
"contieneTextoCompleto" => array:1 [
"en" => true
]
"contienePdf" => array:1 [
"en" => true
]
"autores" => array:1 [
0 => array:2 [
"autoresLista" => "S. Ravara, P. CRP Corrêa, J. Calheiros, C. Pisinger"
"autores" => array:4 [
0 => array:2 [
"nombre" => "S."
"apellidos" => "Ravara"
]
1 => array:2 [
"nombre" => "P. CRP"
"apellidos" => "Corrêa"
]
2 => array:2 [
"nombre" => "J."
"apellidos" => "Calheiros"
]
3 => array:2 [
"nombre" => "C."
"apellidos" => "Pisinger"
]
]
]
]
]
"idiomaDefecto" => "en"
"EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043723000909?idApp=UINPBA00004E"
"url" => "/25310437/0000002900000006/v3_202311162326/S2531043723000909/v3_202311162326/en/main.assets"
]
"en" => array:13 [
"idiomaDefecto" => true
"cabecera" => "<span class="elsevierStyleTextfn">Comment</span>"
"titulo" => "Diagnosis of COVID-19 by sound-based analysis of vocal recordings"
"tieneTextoCompleto" => true
"paginas" => array:1 [
0 => array:2 [
"paginaInicial" => "455"
"paginaFinal" => "456"
]
]
"autores" => array:1 [
0 => array:4 [
"autoresLista" => "P. Carreiro-Martins, P. Paixão, I. Caires, A. Rodrigues, P. Matias, H. Gamboa, A. Carreiro, F. Soares, P. Gomez, J. Sousa, N. Neuparth"
"autores" => array:11 [
0 => array:4 [
"nombre" => "P."
"apellidos" => "Carreiro-Martins"
"email" => array:1 [
0 => "pmartinsalergo@gmail.com"
]
"referencia" => array:3 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">a</span>"
"identificador" => "aff0001"
]
1 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">b</span>"
"identificador" => "aff0002"
]
2 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">*</span>"
"identificador" => "cor0001"
]
]
]
1 => array:3 [
"nombre" => "P."
"apellidos" => "Paixão"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">a</span>"
"identificador" => "aff0001"
]
]
]
2 => array:3 [
"nombre" => "I."
"apellidos" => "Caires"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">a</span>"
"identificador" => "aff0001"
]
]
]
3 => array:3 [
"nombre" => "A."
"apellidos" => "Rodrigues"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">a</span>"
"identificador" => "aff0001"
]
]
]
4 => array:3 [
"nombre" => "P."
"apellidos" => "Matias"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">c</span>"
"identificador" => "aff0003"
]
]
]
5 => array:3 [
"nombre" => "H."
"apellidos" => "Gamboa"
"referencia" => array:2 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">c</span>"
"identificador" => "aff0003"
]
1 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">d</span>"
"identificador" => "aff0004"
]
]
]
6 => array:3 [
"nombre" => "A."
"apellidos" => "Carreiro"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">c</span>"
"identificador" => "aff0003"
]
]
]
7 => array:3 [
"nombre" => "F."
"apellidos" => "Soares"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">c</span>"
"identificador" => "aff0003"
]
]
]
8 => array:3 [
"nombre" => "P."
"apellidos" => "Gomez"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">e</span>"
"identificador" => "aff0005"
]
]
]
9 => array:3 [
"nombre" => "J."
"apellidos" => "Sousa"
"referencia" => array:1 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">f</span>"
"identificador" => "aff0006"
]
]
]
10 => array:3 [
"nombre" => "N."
"apellidos" => "Neuparth"
"referencia" => array:2 [
0 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">a</span>"
"identificador" => "aff0001"
]
1 => array:2 [
"etiqueta" => "<span class="elsevierStyleSup">b</span>"
"identificador" => "aff0002"
]
]
]
]
"afiliaciones" => array:6 [
0 => array:3 [
"entidad" => "Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal"
"etiqueta" => "a"
"identificador" => "aff0001"
]
1 => array:3 [
"entidad" => "Serviço de Imunoalergologia, Hospital de Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, EPE, Rua Jacinta Marto, 1169-045 Lisboa, Portugal"
"etiqueta" => "b"
"identificador" => "aff0002"
]
2 => array:3 [
"entidad" => "Fraunhofer Portugal AICOS - Porto, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal"
"etiqueta" => "c"
"identificador" => "aff0003"
]
3 => array:3 [
"entidad" => "Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Faculdade de Ciências e Tecnologia of NOVA, University of Lisbon, Portugal"
"etiqueta" => "d"
"identificador" => "aff0004"
]
4 => array:3 [
"entidad" => "NeuSpeLab, CTB, Universidad Politécnica de Madrid, Campus de Montegancedo, s/n, 28223 Madrid, Spain"
"etiqueta" => "e"
"identificador" => "aff0005"
]
5 => array:3 [
"entidad" => "NOS Inovação, Rua Actor António Silva, 9 - 6º Piso, Campo Grande, 1600-404 Lisboa, Portugal"
"etiqueta" => "f"
"identificador" => "aff0006"
]
]
"correspondencia" => array:1 [
0 => array:3 [
"identificador" => "cor0001"
"etiqueta" => "⁎"
"correspondencia" => "Corresponding author at: Comprehensive Health Research Centre, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal."
]
]
]
]
"textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0002">Commentary</span><p id="para0001" class="elsevierStylePara elsevierViewall">The COVID-19 pandemic has had a significant impact on the world, with widespread illness, death, and economic disruption. The pandemic constantly evolves as new virus variants emerge, and governments respond with new measures. The development of a diverse range of diagnostic tests<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a> has been triggered to deal with the situation, which can be summarised in three major categories: molecular tests, rapid antigen tests and serology. Molecular tests have been the reference (real-time polymerase chain reaction - RT-PCR), but common to all, these are invasive, although minimally, and costly diagnostic techniques. Although at-home rapid antigen tests are currently available, they are invasive and uncomfortable, vary in accuracy depending on how they are done and must be quickly accessible.<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a> These characteristics may raise perceived barriers to COVID-19 testing and limit the detection of the disease. Vaccines have been unevenly distributed and accepted, and cases are still increasing in some areas. It is unclear what the future holds for the pandemic, but it will likely continue to require effort from all involved.</p><p id="para0002" class="elsevierStylePara elsevierViewall">SARS-CoV-2 infection primarily affects the respiratory tract, including the upper and lower airways, and contributes to the disruption of normal vocalisations. Given this, some research groups have attempted to develop more convenient and accessible COVID-19 diagnostic methods by using machine learning to analyse voice recordings and other audio signals, such as coughing, breathing sounds, and breathing rate. Voice and cough analysis are an attractive approach to screening for respiratory disease symptoms<a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a><span class="elsevierStyleSup">,</span><a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> as sound recordings are simple to acquire and non-invasive. However, due to subtle differences in voice and cough characteristics, artificial intelligence is required to detect specific disease patterns, discard confounding factors that induce similar manifestations, and reduce the effects of environmental noise. Geographic and idiolectal linguistic variations can also affect analyses of these samples.</p><p id="para0003" class="elsevierStylePara elsevierViewall">Most existing algorithms rely on crowdsourced audio sample databases. However, such databases do not ensure the quality of the recordings and contain only a limited number of positive cases. Notable examples of respiratory audio–based sample collection include studies that used the Coswara dataset<a class="elsevierStyleCrossRef" href="#bib0004"><span class="elsevierStyleSup">4</span></a> and the COVID-19 Sounds database.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">5</span></a> The accuracy reached by these studies’ algorithms is debatable as the results derive from unreliable data sources, either due to unconfirmed COVID-19 status or an uncontrolled recording environment.</p><p id="para0004" class="elsevierStylePara elsevierViewall">For this reason, some authors have chosen to conduct their own recording protocols to ensure the reliability of their results. With a sample of 70 SARS-CoV-2-positive patients and 70 healthy individuals, Robotti et al.<a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a> demonstrated that machine learning could accurately discriminate both groups (accuracy, 90.24%). Shimon et al.<a class="elsevierStyleCrossRef" href="#bib0007"><span class="elsevierStyleSup">7</span></a> included 57 patients (25 SARS-CoV-2-positive), achieving an average accuracy of 80%. Pinkas et al.<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a> included recordings of 29 SARS-CoV-2-positive and 59 SARS-CoV-2-negative patients and achieved an accuracy of 79%.</p><p id="para0005" class="elsevierStylePara elsevierViewall">Matias et al.<a class="elsevierStyleCrossRef" href="#bib0009"><span class="elsevierStyleSup">9</span></a> used crowdsourced databases combined with quality assessment algorithms of voice recordings to overcome the above mentioned issues and detect SARS-CoV-2 infection with a more reliable and less noisy dataset. Such an approach reached accuracy values ranging from 75% to 84% on Coswara, and from 67% to 81% on a sub-set of COVID-19 sounds dataset.</p><p id="para0006" class="elsevierStylePara elsevierViewall">The available literature suggests that machine learning tools using voice recordings and other audio signals could provide a non-invasive, low-cost way to screen and flag for SARS-CoV-2 infection, the results of which could later be confirmed with a clinically validated test. Such algorithms are powerful in their ability to automatically learn hidden patterns from data and decision rules. Combined with signal processing and expertise in feature engineering, they can form reliable tools to help track infection in a more decentralised way. This is particularly important in diseases where infection isolation is critical.</p><p id="para0007" class="elsevierStylePara elsevierViewall">Nevertheless, future studies should validate the robustness of these algorithms in real-world settings and assess the feasibility of adapting this approach to other areas, such as other respiratory infections, such as seasonal influenza. Additionally, machine learning tools could also be used to monitor other chronic respiratory illnesses including asthma, COPD, obstructive sleep apnoea, and tuberculosis.<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a> In the future, this strategy might contribute to more decentralised screening for respiratory diseases, facilitating early diagnosis and monitoring disease progression, potentially improving outcomes for patients with these conditions, and reducing pressure on the healthcare system.</p></span></span>"
"textoCompletoSecciones" => array:1 [
"secciones" => array:2 [
0 => array:2 [
"identificador" => "sec0001"
"titulo" => "Commentary"
]
1 => array:1 [
"titulo" => "References"
]
]
]
"pdfFichero" => "main.pdf"
"tienePdf" => true
"fechaRecibido" => "2022-12-06"
"fechaAceptado" => "2023-03-14"
"bibliografia" => array:2 [
"titulo" => "References"
"seccion" => array:1 [
0 => array:2 [
"identificador" => "cebibsec1"
"bibliografiaReferencia" => array:9 [
0 => array:3 [
"identificador" => "bib0001"
"etiqueta" => "1"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "COVID-19 testing and diagnostics: a review of commercialized technologies for cost, convenience and quality of tests"
"autores" => array:1 [
0 => array:2 [
"etal" => false
"autores" => array:6 [
0 => "A Benda"
1 => "L Zerajic"
2 => "A Ankita"
3 => "E Cleary"
4 => "Y Park"
5 => "S. Pandey"
]
]
]
]
]
"host" => array:2 [
0 => array:1 [
"Revista" => array:5 [
"tituloSerie" => "Sensors"
"fecha" => "2021"
"volumen" => "21"
"numero" => "19"
"paginaInicial" => "6581"
]
]
1 => array:1 [
"WWW" => array:1 [
"link" => "https://www.mdpi.com/1424-8220/21/19/6581"
]
]
]
]
]
]
1 => array:3 [
"identificador" => "bib0002"
"etiqueta" => "2"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "TussisWatch: a smart-phone system to identify cough episodes as early symptoms of chronic obstructive pulmonary disease and congestive heart failure"
"autores" => array:1 [
0 => array:2 [
"etal" => true
"autores" => array:6 [
0 => "A Windmon"
1 => "M Minakshi"
2 => "P Bharti"
3 => "S Chellappan"
4 => "M Johansson"
5 => "BA Jenkins"
]
]
]
]
]
"host" => array:1 [
0 => array:2 [
"doi" => "10.1109/JBHI.2018.2872038"
"Revista" => array:7 [
"tituloSerie" => "IEEE J Biomed Health Inform"
"fecha" => "2019"
"volumen" => "23"
"numero" => "4"
"paginaInicial" => "1566"
"paginaFinal" => "1573"
"link" => array:1 [
0 => array:2 [
"url" => "https://www.ncbi.nlm.nih.gov/pubmed/30273159"
"web" => "Medline"
]
]
]
]
]
]
]
]
2 => array:3 [
"identificador" => "bib0003"
"etiqueta" => "3"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "Detection of tuberculosis by automatic cough sound analysis"
"autores" => array:1 [
0 => array:2 [
"etal" => true
"autores" => array:6 [
0 => "GHR Botha"
1 => "G Theron"
2 => "RM Warren"
3 => "M Klopper"
4 => "K Dheda"
5 => "PD van Helden"
]
]
]
]
]
"host" => array:2 [
0 => array:1 [
"Revista" => array:5 [
"tituloSerie" => "Physiol Meas"
"fecha" => "2018"
"volumen" => "39"
"numero" => "4"
"paginaInicial" => "45005"
]
]
1 => array:1 [
"WWW" => array:1 [
"link" => "https://doi.org/10.1088/1361-6579/aab6d0"
]
]
]
]
]
]
3 => array:3 [
"identificador" => "bib0004"
"etiqueta" => "4"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "Coswara - a database of breathing, cough, and voice sounds for COVID-19 diagnosis"
"autores" => array:1 [
0 => array:2 [
"etal" => true
"autores" => array:6 [
0 => "N Sharma"
1 => "P Krishnan"
2 => "R Kumar"
3 => "S Ramoji"
4 => "SR Chetupalli"
5 => "R Nirmala"
]
]
]
]
]
"host" => array:1 [
0 => array:1 [
"LibroEditado" => array:4 [
"titulo" => "Proceedings of the annual conference of the International Speech Communication Association, INTERSPEECH. 2020"
"paginaInicial" => "4811"
"paginaFinal" => "4815"
"serieFecha" => "2020"
]
]
]
]
]
]
4 => array:3 [
"identificador" => "bib0005"
"etiqueta" => "5"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "COVID-19 sounds: a large-scale audio dataset for digital respiratory screening"
"autores" => array:1 [
0 => array:2 [
"etal" => true
"autores" => array:6 [
0 => "T Xia"
1 => "D Spathis"
2 => "C Brown"
3 => "J Chauhan"
4 => "A Grammenos"
5 => "J Han"
]
]
]
]
]
"host" => array:2 [
0 => array:1 [
"LibroEditado" => array:4 [
"titulo" => "Thirty-fifth conference on neural information processing systems datasets and benchmarks track (round 2)"
"paginaInicial" => "1"
"paginaFinal" => "13"
"serieFecha" => "2021"
]
]
1 => array:1 [
"WWW" => array:1 [
"link" => "https://covid19.who.int/"
]
]
]
]
]
]
5 => array:3 [
"identificador" => "bib0006"
"etiqueta" => "6"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "Machine learning-based voice assessment for the detection of positive and recovered COVID-19 patients"
"autores" => array:1 [
0 => array:2 [
"etal" => true
"autores" => array:6 [
0 => "C Robotti"
1 => "G Costantini"
2 => "G Saggio"
3 => "V Cesarini"
4 => "A Calastri"
5 => "E Maiorano"
]
]
]
]
]
"host" => array:1 [
0 => array:2 [
"doi" => "10.1016/j.jvoice.2021.11.004"
"Revista" => array:2 [
"tituloSerie" => "J Voice"
"fecha" => "2021"
]
]
]
]
]
]
6 => array:3 [
"identificador" => "bib0007"
"etiqueta" => "7"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "Artificial intelligence enabled preliminary diagnosis for COVID-19 from voice cues and questionnaires"
"autores" => array:1 [
0 => array:2 [
"etal" => false
"autores" => array:4 [
0 => "C Shimon"
1 => "G Shafat"
2 => "I Dangoor"
3 => "A. Ben-Shitrit"
]
]
]
]
]
"host" => array:2 [
0 => array:2 [
"doi" => "10.1121/10.0003434"
"Revista" => array:7 [
"tituloSerie" => "J Acoust Soc Am"
"fecha" => "2021"
"volumen" => "149"
"numero" => "2"
"paginaInicial" => "1120"
"paginaFinal" => "1124"
"link" => array:1 [
0 => array:2 [
"url" => "https://www.ncbi.nlm.nih.gov/pubmed/33639822"
"web" => "Medline"
]
]
]
]
1 => array:2 [
"doi" => "10.1121/10.0003434"
"WWW" => array:1 [
"link" => "https://asa.scitation.org/doi/10.1121/10.0003434"
]
]
]
]
]
]
7 => array:3 [
"identificador" => "bib0008"
"etiqueta" => "8"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "SARS-CoV-2 detection from voice"
"autores" => array:1 [
0 => array:2 [
"etal" => false
"autores" => array:6 [
0 => "G Pinkas"
1 => "Y Karny"
2 => "A Malachi"
3 => "G Barkai"
4 => "G Bachar"
5 => "V. Aharonson"
]
]
]
]
]
"host" => array:2 [
0 => array:2 [
"doi" => "10.1109/OJEMB.2020.3026468"
"Revista" => array:6 [
"tituloSerie" => "IEEE Open J Eng Med Biol"
"fecha" => "2020"
"volumen" => "1"
"paginaInicial" => "268"
"paginaFinal" => "274"
"link" => array:1 [
0 => array:2 [
"url" => "https://www.ncbi.nlm.nih.gov/pubmed/35402954"
"web" => "Medline"
]
]
]
]
1 => array:2 [
"doi" => "10.1109/OJEMB.2020.3026468"
"WWW" => array:1 [
"link" => "https://ieeexplore.ieee.org/document/9205643/"
]
]
]
]
]
]
8 => array:3 [
"identificador" => "bib0009"
"etiqueta" => "9"
"referencia" => array:1 [
0 => array:2 [
"contribucion" => array:1 [
0 => array:2 [
"titulo" => "Clinically relevant sound-based features in COVID-19 identification: robustness assessment with a data-centric machine learning pipeline"
"autores" => array:1 [
0 => array:2 [
"etal" => true
"autores" => array:6 [
0 => "P Matias"
1 => "J Costa"
2 => "AV. Carreiro"
3 => "H Gamboa"
4 => "I Sousa"
5 => "P Gomez"
]
]
]
]
]
"host" => array:1 [
0 => array:1 [
"Revista" => array:5 [
"tituloSerie" => "IEEE Access"
"fecha" => "2022"
"volumen" => "10"
"paginaInicial" => "105149"
"paginaFinal" => "105168"
]
]
]
]
]
]
]
]
]
]
]
"idiomaDefecto" => "en"
"url" => "/25310437/0000002900000006/v3_202311162326/S2531043723000570/v3_202311162326/en/main.assets"
"Apartado" => array:4 [
"identificador" => "88181"
"tipo" => "SECCION"
"en" => array:2 [
"titulo" => "Commentaries"
"idiomaDefecto" => true
]
"idiomaDefecto" => "en"
]
"PDF" => "https://static.elsevier.es/multimedia/25310437/0000002900000006/v3_202311162326/S2531043723000570/v3_202311162326/en/main.pdf?idApp=UINPBA00004E&text.app=https://journalpulmonology.org/"
"EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043723000570?idApp=UINPBA00004E"
]