Journal Information
Vol. 15. Issue 2.
Pages 261-293 (March - April 2009)
Share
Share
Download PDF
More article options
Vol. 15. Issue 2.
Pages 261-293 (March - April 2009)
Prémio Robalo Cordeiro Aer/Gsk 2008
Full text access
Nanoradioliposomes molecularly modulated to study the lung deep lymphatic drainage
Nanorradiolipossomas modulados molecularmente para estudar a drenagem linfática pulmonar profunda
Visits
1094
Maria Filomena Rabaça Roque Botelho1,
Corresponding author
filomena@ibili.uc.pt

Correspondence to/Correspondência: Instituto de Biofísica e Biomatemática, IBILI-Faculdade de Medicina, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal. Tel.: +351 239 480240, FAX: +351 239 480258.
, Maria Alcide Tavares Marques2, Célia Maria Freitas Gomes1, Augusto Marques Ferreira da Silva3, Vasco António Andrade Figueiredo Bairos4, Manuel Amaro de Matos Santos Rosa5, Antero Pena Abrunhosa1, João José Pedroso de Lima1
1 Instituto de Biofísica e Biomatemática, Faculdade de Medicina, Universidade de Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
2 Departmento de Ciências Pneumológicas e Alergológicas, Hospitais da Universidade de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, Portugal
3 Departmento de Electrónica e Telecomunicações, Universidade de Aveiro, 3810-193 Aveiro, Portugal
4 Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
5 Instituto de Imunologia, Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Abstract

Lung deep lymphatic drainage (LDLD) plays an important role in the removal of foreign materials from lungs being alveolar macrophages the first line of phagocytic defence with high affinity for pathogenic microorganisms. Bacillus subtilis is a well-known genome- decoded saprophyte of the human respiratory tract used in research and in the biotechnology industry.

Lung deep lymphatic chains (LDLC) constitute one of the first sites of lung tumours’ dissemination. In this work we intended to develop and validate a non-invasive method for assessing LDLC by nanoradioliposomes aerosolised modulated on the Bacillus subtilis spore wall. The final goal was to produce a nanoradioliposome formulation that can mimics the dynamics of preferential removal of spores by LDLD and present the ideal properties as a tracer for molecular imaging studies.

Seven different liposomal formulations were tested, and the formulation-F demonstrated physicochemical and radiopharmaceutical properties that make it an ideal candidate as an in vivo probe for molecular imaging studies of the LDLC.

Nanoradioliposomes of the formulation-F after labelling with 99mTc-HMPAO were administered as aerosols to 20 Sus scrofa. Hilar and interpulmonary communications were visualized in first 5 minutes post-inhalation, infradiaphragmatic chains between 10 and 20 minutes, the ganglia of the aortic chain at 20 minutes and those of the renal hilar region at 30 minutes.

Conclusion

the proposed method enables visualization of deep lymphatic lung network and lymph nodes. Besides, this technique involving the modulation of nanoradioliposomes targeting specific organs or tissues may be an important tool for diagnostic or even for therapeutic purposes.

Key-words:
Nanoradioliposomes
molecular modulation
lung lymphatic drainage
functional nuclear imaging
Resumo

A drenagem linfática pulmonar profunda (DLPP) desempenha um papel importante na remoção de materiais estranhos, constituindo os macrófagos alveolares a primeira linha de defesa fagocitária, dada a grande afinidade para microrganismos patogénicos. Os Bacillus subtilis são saprófitas do tracto respiratório humano com ampla utilização em investigação e em biotecnologia.

As cadeias linfáticas pulmonares profundas (CLPP) constituem um dos primeiros locais de disseminação de tumores pulmonares.

Neste trabalho pretendeu-se desenvolver e validar um método não invasivo para avaliar as CLPP através de nanorradiolipossomas aerosolisados e modulados pela parede do esporo do Bacillus subtilis. O objectivo final foi produzir uma formulação de nanorradiolipossomas capaz de imitar a dinâmica da remoção de esporos pelas CLPP e simultaneamente ter propriedades ideais como traçador para imagiologia molecular. Testámos sete diferentes formulações lipossómicas, tendo a formulação F demonstrado possuir propriedades fisicoquímicas e radiofarmacêuticas que a tornam o traçador ideal para imagiologia molecular in vivo das CLPP.

Os nanorradiolipossomas da formulação F após marcação com 99mTc-HMPAO foram administrados sob a forma de aerossóis a 20 Sus scrofa. Visualizaram-se comunicações hilares e interpulmonares nos primeiros 5 minutos após a inalação, as cadeias infradiafragmáticas entre os 10 e os 20 minutos, os gânglios da cadeia aórtica aos 20 minutos e os da região hilar renal aos 30 minutos.

Em conclusão, o método proposto visualiza os gânglios linfáticos e a rede linfática pulmonar profunda. A modulação dos nanorradiolipossomas permite que eles atinjam órgãos ou tecidos específicos, conferindo-lhes importantes potencialidades no âmbito do diagnóstico e/ou da terapêutica.

Palavras-chave:
Nanorradiolipossomas
modulação molecular
drenagem linfática pulmonar
imagem nuclear funcional
Full text is only aviable in PDF
Bibliography
[1.]
D.G. Bishop, L. Rutberg, B. Samuelsson.
The chemical composition of the cytoplasmic membrane of Bacillus subtilis.
Eur J Biohem, 2 (1967), pp. 448-453
[2.]
J.A.F. Op der Kamp, I. Redai, L.L.M. van Deenen.
Phosholipid composition of Bacillus subtilis.
J Bacteriol, 99 (1969), pp. 298-303
[3.]
D.C. McPherson, H. Kim, M. Hahn, R. Wang, P. Grabowski, P. Eichenberger, A. Driks1.
Characterization of the Bacillus subtilis spore morphogenetic coat Protein CotO J Bacteriol, 187 (2005), pp. 8278-8290
[4.]
V. Leak, V.J. Ferrans, et al.
Lymphatics and lymphoid tissue.
The Lung: Scientific Foundations, pp. 779-786
[5.]
A.E. Taylor, J.W. Barnard, S.A. Barman, W.K. Adkins.
Fluid Balance.
The Lung: Scientific Foundations, pp. 1147-1161
[6.]
C. Nagaishi, Y. Okada.
The pulmonary lymphatic system.
pp. 901-908
[7.]
A.P. Fishman.
Pulmonary edema.
pp. 919-952
[8.]
J.M. Lauweryns, J.H. Baert.
Alveolar clearance and the role of the pulmonary lymphatics.
Am Rev Respir Dis, 115 (1977), pp. 625-683
[9.]
T. Grant, B. Levin.
Lymphangiographic visualization of pleural and pulmonary lymphatics in a patient without chylothorax.
Radiology, 113 (1974), pp. 49-50
[10.]
J. Liua, Ho-Lun Wong, B. Moselhyc, X.Y. Bowenc, M.R. Wuc, Johnston.
Targeting colloidal particulates to thoracic lymph nodes.
Lung Cancer, 51 (2006), pp. 377-386
[11.]
R.S. Hanson, J.A. Peterson, A.A. Yousten.
Unique biochemical events in bacterial sporulation.
Annu Rev Microbiol, 24 (1970), pp. 53-90
[12.]
A.I. Aronson, P. Fitz-James.
Structure and morphogenesis of the bacterial spore coat.
Bacteriol Rev, 40 (1976), pp. 360-402
[13.]
J.C. Parker.
Transport and distribution of charged macromolecules in lung.
Adv Microcirc, 13 (1987), pp. 150-159
[14.]
M.C. Finkelstein, G. Weissmann.
Enzyme replacement via liposomes. Variations in lipid composition determine liposomal integrity in biological fluids.
Biochim Biophys Acta, 587 (1979), pp. 202-216
[15.]
J. Gregoriadis, Senior.
The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation.
FEBS Letters, 119 (1980), pp. 43-46
[16.]
M.R. Zalustry, M.A. Noska, P.W. Gallagher.
Properties of multilamellar liposomes containing 99mTcO4-: Effect of distearoylphosphatidylcholine to sphingomyelin ratio.
J Nucl Med, 13 (1986), pp. 269-276
[17.]
R. Nayar, M.J. Hope, P.R. Cullis.
Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion techniques.
Biochim Biophys Acta, 986 (1989), pp. 200-206
[18.]
C. Oussoren, G. Storm.
Targeting to lymph nodes by subcutaneous administration of liposomes.
Inter J Pharma, 162 (1998), pp. 39-44
[19.]
W.T. Phillips, R. Klipper, B. Goins.
Novel method of greatly enhanced delivery of liposomes to lymph nodes1.
JPET, 295 (2000), pp. 309-313
[20.]
W. Yan, L. Huang.
Recent advances in liposomebased nanoparticles for antigen delivery.
Polymer Reviews, 47 (2007), pp. 329-344
[21.]
D.A. Tyrrell, T.D. Heath, C.M. Colley, B.E. Ryman.
New aspects of liposomes.
Biochim Biophys Acta, 457 (1976), pp. 259-302
[22.]
C. Kirby, J. Clarke, G. Gregoriadis.
Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro.
Biochem J, 186 (1980), pp. 591-598
[23.]
M.R. Mauk, R.C. Gamble.
Preparation of lipid vesicles containing high levels of entrapped radioactive cations.
Anal Biochem, 94 (1979), pp. 302-307
[24.]
P. Osborne, V.J. Richardson, K. Jeysingh, B.E. Ryman.
Radionuclide-labelled liposomes – A new lymph node imaging agent.
Int J Nucl Med, 6 (1979), pp. 75-83
[25.]
W.T. Phillips, A.S. Rudolph, B. Goins, J.H. Timmons, R. Klipper, R. Blumhardt.
A simple method for producing technetium-99m-labeled liposome which is stable in vivo.
Nucl Med Biol, 19 (1992), pp. 539-547
[26.]
M.R. Jacquier-Sarlier, B.S. Polla, D.O. Slosman.
Oxidoreductive state: the major determinant for cellular retention of technetium-99m-HMPAO.
J Nucl Med, 37 (1996), pp. 1413-1416
[27.]
B. Goins, W.T. Phillips, R. Klipper.
Blood-pool imaging using technetium-99m-labeled liposomes.
J Nucl Med, 37 (1996), pp. 1374-1379
[28.]
V.D. Awashi, B. Goins, R. Klipper, W.T. Phillips.
Dual radiolabeled liposomes: biodistribution studies and localization of focal sites of infection in rats.
Nucl Med Biol, 25 (1998), pp. 155-160
[29.]
R.C. MacDonald, R.I. MacDonald, B.P.M. Menco, K. Takeshita, N.K. Subbarao, L.-R. Hu.
Small-volume extrusion apparatus for preparation of large unilamellar vesicles.
Biochim Biophys Acta, 1061 (1991), pp. 297-303
[30.]
F. Olson, C.A. Hunt, F.C. Szoka, W.J. Vail, D. Papahadjopoulos.
Preparation of liposomes of defined size and distribution by extrusion through polycarbonate membranes.
Biochim Biophys Acta, 557 (1979), pp. 9-23
[31.]
M.J. Hope, M.B. Bally, G. Webb, P.R. Cullis.
Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential.
Biochim Biophys Acta, 812 (1985), pp. 55-65
[32.]
C. Huang.
Studies on phosphatidylcholine vesicles. Formation and physical characteristics.
Biochemistry, 8 (1969), pp. 344-351
[33.]
I.R. McDougall, J.K. Dunnick, M.L. Goris, J.P. Kriss.
In vivo distribution of vesicles loads with radiopharmaceuticals: a study of different routes of administration.
J Nucl Med, 16 (1975), pp. 488-491
[34.]
L.A. Medina, R. Klipper, W.T. Phillips, B. Goins.
Pharmacokinetics and biodistribution of [111In]-avidin and [99mTc]-biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes.
Nucl Med Biol, 31 (2004), pp. 41-51
[35.]
W.T. Phillips, R. Klipper, B. Goins.
Use of 99mTclabeled liposomes encapsulating blue dye for identification of the sentinel lymph node.
J Nucl Med, 42 (2001), pp. 446-451
[36.]
F. Ahkong, C. Tilcock.
Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipal mitoylphosphatidyl ethanolamine-DTTA.
Nucl Med Biol, 19 (1992), pp. 831-840
[37.]
L.P. Kasi, G. Lopez-Berestein, K. Mehta, M. Rosenblum, H.J. Glenn, T.P. Haynie, G. Mavligit, E.M. Hersh.
Distribution and pharmacology of intravenous 99mtclabeled multilamellar liposomes in rats and mice.
Int J Nucl Med Biol, 11 (1984), pp. 35-37
[38.]
B. Goins, R. Klipper, A.S. Rudolph, W.T. Phillips.
Use of technetium-99m-liposomes in tumor imaging J Nucl Med, 35 (1994), pp. 1491-1498
[39.]
S.M. Saari, M.T. Vidgren, M.O. Koskinen, V.M.H. Turjanmaa, J.C. Waldrep, M.N. Nieminem.
Regional lung deposition and clearance of 99mTc-labeled beclomethasone- DLPC liposomes in mild and severe asthma.
Chest, 113 (1998), pp. 1573-1579
[40.]
P. Shurtenberger, H. Hauser.
Characterization of the size distribution of unilamellar vesicles by gel filtration, quasi-elastic light scattering and electron microscopy.
Biochim Biophys Acta, 778 (1984), pp. 470-480
[41.]
G. Perevucnik, P. Schurtenberger, H. Hauser.
Size analysis of biological membrane vesicles by gel filtration, dynamic light scattering and electron microscopy.
Biochim Biophys Acta, 821 (1985), pp. 169-173
[42.]
L.D. Mayer, M.J. Hope, P.R. Cullis.
Vesicles of variable sizes produced by a rapid extrusion procedure.
Biochim Biophys Acta, 858 (1986), pp. 161-168
[43.]
D.J. Hnatowich, B. Clancy.
Investigations of a new, highly negative liposome with improved biodistribution for imaging.
J Nucl Med, 21 (1980), pp. 662-669
[44.]
K.M.G. Taylor, G. Taylor, I.W. Kellaway, J. Stevens.
The stability of liposomes to nebulization.
Int J Pharm, 58 (1990), pp. 57-61
[45.]
R.W. Niven, H. Schreier.
Nebulization of liposome. I. Effects of lipid composition.
Pharm Res, 7 (1990), pp. 1127-1133
[46.]
K.K.M. Leung, P.A. Bridges, K.M.G. Taylor.
The stability of liposomes to ultrasonic nebulization.
Int J Pharm, 145 (1996), pp. 95-102
[47.]
S. Thomas, H. Atkins, J. McAfee, M.D. Blaufox, M. Fernandez, P.T. Kirchner, R.C. Reba.
Radiation absorbed dose from tc-99m diethylenetriaminepentaacetic acid (DTPA).
J Nucl Med, 25 (1984), pp. 503-505
[48.]
International Commission of Radiation Protection Publication 30. New York, Pergamon Press, 1988.
[49.]
V.J. Caride.
Technical and biological considerations on the use of radiolabeled liposomes for diagnostic imaging.
Nucl Med Biol, 17 (1990), pp. 35-39
[50.]
B. Goins, R. Klipper, A.S. Rudolph, R.O. Cliff, R. Blumhardt, W.T. Phillips.
Biodistribution and ima ging studies of technetium-99m-labeled liposomes in rats with focal infection.
J Nucl Med, 34 (1993), pp. 2160-2168
[51.]
J.H. Crowe, L.M. Crowe, J.F. Carpenter, A.S. Rudolph, C.A. Wistrom, B.J. Spargo, T.J. Anchordoguy.
Interactions of sugars with membranes.
Biochim Biophys Acta, 947 (1988), pp. 367-384
[52.]
R.P. Goodrich, T.M. Handel, J.D. Baldeschwieler.
Modification of lipid phase behavior with membranebound cryoprotectants.
Biochim Biophys Acta, 938 (1988), pp. 143-154
[53.]
O.N.M. Mc Callion, K.M.G. Taylor, M. Thomas, A.J. Taylor.
Nebulization of monodisperse latex sphere suspensions in air-jet and ultrasonic nebulizers.
Int J Pharm, 133 (1996), pp. 203-214
[54.]
R.F. Phalen.
Basic morphology and physiology of the respiratory tract.
in: Inhalation Studies: Foundations and techniques, CRC Press, Boca Raton, (1984),
Copyright © 2009. Sociedade Portuguesa de Pneumologia
Download PDF
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?