Journal Information
Vol. 27. Issue 4.
Pages 375-380 (July - August 2021)
Share
Share
Download PDF
More article options
Visits
...
Vol. 27. Issue 4.
Pages 375-380 (July - August 2021)
Letter to the Editor
DOI: 10.1016/j.pulmoe.2021.01.006
Open Access
Screening of inhalation technique and treatment adherence in asthma, COPD and ACO patients
Visits
...
M. Nobre Pereira
Corresponding author
martapereira_15@hotmail.com

Corresponding author at: Pulmonology Department, Centro Hospitalar Universitário do Algarve - Hospital de Faro, Rua Leão Penedo, 8000-386, Faro, Portugal.
, T. Marques, V. Areias, C. Guerreiro, K. Cunha, H. Ramos
Pulmonology Department, Centro Hospitalar Universitário do Algarve - Hospital de Faro, Portugal
Article information
Full Text
Bibliography
Download PDF
Statistics
Figures (1)
Tables (2)
Table 1. Baseline sociodemographic and clinical characteristics of the participants.
Table 2. Description of the evolution trough the three evaluations.
Show moreShow less
Full Text

Inhaled medication is essential for the treatment of chronic lung disease.1–3 Inhaler misuse is quite common, and it reduces medication effectiveness.4 This problem leads to poor clinical outcomes.

The aim of this study was to assess the inhalation technique of patients with asthma, chronic obstructive pulmonary disease (COPD) and asthma/COPD overlap (ACO), and to evaluate the impact of constant technique learning in every appointment.

A quasi-experimental study was conducted in the outpatient Pulmonary clinic of Faro Hospital, from September 2017 to September 2018. Patients with asthma, COPD and ACO, who were already on inhaled therapy, were included along the first six months of the study. A questionnaire was designed to evaluate patients’ demographic and clinical data, pulmonary function and inhalation technique (using pre-defined checklists). These questionnaires were filled in at three stages: at baseline, one month later and after six months. When errors were detected the correct technique was explained verbally by a physician following each assessment and a visual explanation also given.

Ninety-seven patients were included: 41.2% had asthma, 41.2% COPD and 17.5% had ACO. Table 1 describes patients’ characteristics at baseline. In total, 444 observations of inhalation technique were documented: 305 dry powder inhalers (DPI), 112 metered-dose inhalers (MDI with or without spacer) and 27 soft-mist inhalers (SMI).

Table 1.

Baseline sociodemographic and clinical characteristics of the participants.

Variable  All (n=97)  Asthma (n=40)  COPD (n=40)  ACO (n=17)  p value 
Age (years)  61.2±14.3  53.5±16.2#1  69.1±8.6#1  60.7±10.0  #1<0.001 
≥65 years old  44 (45.4%)  11 (27.5%)  27 (67.5%)  6 (35.3%)  0.001 
Male  52 (53.6%)  8 (20%)  35 (87.5%)  9 (52.9%)  0.001 
Body Mass Index (kg/m228.6±6.8  30.9±7.8#1  26.6±5.4#1  27.9±6.3  #10.019 
Level of education           
None  4 (4.1%)  1 (2.5%)  2 (5%)  1 (5.9%)   
Low (primary school)  45 (46.4%)  16 (40%)  25 (62.5%)  4 (23.5%)  0.038 
Middle (high school)  41(42.3%)  18 (45%)  11 (27.5%)  12 (70.6%)   
High (bachelor or higher)  7 (7.2%)  5 (12.5%)  2 (5%)  0 (0%)   
Smoking status           
Non-smokers  22 (22.7%)  20 (50%)  0 (0%)  2 (11.8%)   
Current smokers  36 (37.1%)  7 (17.5%)  18 (45%)  11 (64.7%)  <0.001 
Ex-smokers  39 (40.2%)  13 (32.5%)  22 (55%)  4 (23.5%)   
Pack years  38.7±25.7  13.4±9.1#1 #2  52.1±25.8#1  36.6±9.2 #2  #1<0.001 
          #20.001 
Lung function test           
FEV1 % predicted  69.3±25.5  89.5±19.4#1#2  54±19.7#1  61.7±20.0#2  #1#2<0.001 
FVC % predicted  98.5±21.4  108.7±20.9  90.1±20.2  96.6±16.8   
FEV1/FVC ratio  56.4±15.3  68.3±10.5  47.0±12.0  52.2±14.1  <0.001 
mMRC           
24 (24.7%)  16 (40%)  4 (10%)  4 (23.5%)   
28 (28.9%)  14 (35%)  8 (20%)  6 (35.3%)   
34 (35.1%)  9 (22.5%)  20 (50%)  5 (29.4%)   
10 (10.3%)  1 (2.5%)  7 (17.5%)  2 (11.8%)   
1 (1%)  0 (0%)  1 (2.5%)  0 (0%)   
mMRC ≥2  45 (46.4%)  10 (25%)  28 (70%)  7 (41.2%)  <0.001 
COPD Assessment Test           
Total score      17.0±7.7     
Low impact (≤10)      8 (20%)     
Medium impact (11-20)      18 (45%)     
High impact (21-30)      14 (35%)     
Very high impact (31-40)      0 (0%)     
Asthma Control Test           
Total score    19.4±5.0    19.3±5.1   
Poorly controlled (5-15)    10 (25%)    6 (35.3%)   
Not well-controlled (16-19)    3 (7.5%)    1 (5.9%)   
Well controlled (20-25)    27 (67.5%)    10 (58.8%)   
GOLD grade (n=59)           
    4 (10%)  4 (23.5%)   
    22 (55%)  9 (52.9%)   
    11 (27.5%)  3 (17.6%)   
    3 (7.5%)  1 (5.9%)   
GOLD group (n=59)           
    5 (12.5%)  8 (47.1%)   
    20 (50%)  4 (23.5%)   
    1 (2.5%)  2 (11.8%)   
    14 (35%)  3 (17.6%)   
GINA step of treatment (n=59)           
  1 (2.5%)    0 (0%)   
  0 (0%)    0 (0%)   
  12 (30%)    3 (17.6%)   
  21 (52.5%)    11 (64.7%)   
  6 (15%)    3 (17.6%)   
Total follow-up time (years)  4.0±4.3  3.7±4.7  4.5±4.3  3.3±3.2  ns 
Number of inhalers           
59  31  21   
30  13  10   
 
 
Patients with ≥2 different devices  38 (39.2%)  9 (22.5%)  19 (47.5%)  10 (58.8%)  0.028 
Type of inhaler device           
DPI  109  38  52  19   
MDI  28  12  11   
SMI   
Number of moderate to severe exacerbations in the past 12 months  2.4±5.5  2.0±3.2  1.3±2.0  3.5±11.3  ns 
Number of exacerbations with hospitalization in the past 12 months  0.3±0.6  0.2±0.4  0.4±0.6  0.3±1.0  ns 
Number of ER visits in the past 12 months  1.0±4.1  0.6±1.0  0.9±1.5  2.4±9.4  ns 
Number of antibiotic treatments in the past 12 months  0.6±1.0  0.6±1.1  0.7±0.9  0.3±0.7  ns 
Number of OCS treatments in the past 12 months  0.6±1.0  0.6±1.2  0.5±0.8  0.5±1.2  ns 
Number of errors  1.8±2.2  1.3±1.4#1  2.5±2.7#1  1.7±2.1  #10.048 

Data presented in number (%) and average±standard deviation. #1 Comparing asthma and COPD; #2 Comparing asthma and ACO; COPD: chronic obstructive pulmonary disease; ACO: asthma COPD overlap; ns: non-significant; FEV1: Forced Expiratory Volume in the first second; FVC: Forced Vital Capacity; mMRC: modified Medical Research Council scale; GOLD: Global Initiative for Chronic Obstructive Lung Disease; GINA: Global Iniciative for Asthma; DPI: dry powder inhalers; MDI: metered-dose inhalers; SMI: soft-mist inhalers; ER: emergency room; OCS: oral corticosteroids.

At baseline, 69% of the patients made at least one error related to the inhaler technique. Errors were more prevalent among: ≥65 years old patients (2.5±2.8 vs 1.3±1.4 errors, p=0.021); <1 year of a total follow-up time by Pulmonology (2.9±1.6 vs 1.6±2.2 errors, p=0.002); mMRC scale ≥2 (2.5±2.6 vs 1.3±1.6 errors, p=0.002); ≥1 severe exacerbations in the previous year (2.8±2.8 vs 1.3±1.6, p=0.001); patients with low and middle education levels (53.7% and 40.3%, respectively, p=0.033) and in those using ≥1 inhaler device (84.6% had errors, p=0.007). At the outset of the study 56.7% of the patients who did not have proper inhalation techniques were more symptomatic, with a mMRC scale ≥2 (p=0.002). COPD patients had statistically more errors than the asthmatic population. Of the patients who had moderate to severe exacerbations during the year before entering the study, 90.5% misused the inhaler (p<0.001).

Analysing per device (Table 2), the most common errors were device-independent: not exhaling before and not breath-holding after the inhalation. The most frequent device-dependent errors were activation errors in DPI and SMI, and omitting to shake the MDI device. From the first to the last evaluation there was a significant reduction in the number of errors, especially in DPI. Fig. 1 shows the number of errors made by each patient per device type, in every evaluation. In general, there was a reduction in the number of patients who had three or more errors, and an increase in those who had no errors over the three interviews.

Table 2.

Description of the evolution trough the three evaluations.

  1st evaluation (n=97)    2nd evaluation (n=90)    3rd evaluation (n=90)   
    Difference 1st and 2nd p value    Difference 2nd and 3rd p value    Difference 1st and 3rd p value 
Number of errors  1.9±2.3  ns  1.8±2.0  0.002  1.0±1.6  <0.001 
Total number of devices             
DPI  145    163    136  ns 
- Number of devices  109    99    97   
- Device dependent errors  10 (0.1±0.4)  ns  12 (0.1±0.4)  ns  8 (0.1±0.3)   
- Device independent errors  112 (1.3±1.5)  0.023  77 (0.9±1.1)  <0.001  42 (0.5±0.8)  0.007 
- Total number of errors  122 (1.4±1.6)  0.018  89 (1.1±1.3)  0.010  50 (0.6±1.0)  <0.001 
MDI             
- Number of devices  28    56    28   
- Device dependent errors  15 (0.5±0.6)  ns  28 (0.5±0.5)  ns  15 (0.6±0.7)  ns 
- Device independent errors  28 (1.0±1.1)  ns  44 (0.8±1.0)  ns  16 (0.6±0.9)  ns 
- Total number of errors  43 (1.5 ± 1.4)  ns  72 (1.3±1.1)  ns  31 (1.2±1.3)  ns 
SMI             
- Number of devices      11   
- Device dependent errors  2 (0.3±0.5)  --  --  2 (0.3±0.7)  ns 
- Device independent errors  10 (1.3±0.7)  ns  8 (1.1±1.1)  ns  6 (0.6±1.5)  ns 
- Total number of errors  12 (1.5 ± 0.8)  ns  8 (1.1±1.0)  ns  8 (0.7 ± 2.1)  ns 
Patients with ≥2 inhalers  38 (39.2%)    57 (63.3%)    40 (44.4%)   
Hospitalizations  0.3±0.6  <0.001  0.04±0.3  ns  0.08±0.3  0.001 
ER visits  1.0±4.1  <0.001  0.3±1.3  0.008  0.5±1.3  ns 
Severe exacerbations  1.3±4.6  <0.001  0.3±1.5  0.002  0.6±1.5  0.009 
Antibiotic treatments  0.6±1.0  <0.001  0.2±0.4  0.010  0.4±0.7  ns 
OCS treatments  0.6±1.0  <0.001  0.1±0.3  <0.001  0.3±0.5  0.006 
Asthma             
- Severe exacerbations  0.8 ± 1.4  0.012  0.1±0.3  ns  0.3±0.7  ns 
- Hospitalizations  0.2 ± 0.4  0.034  0±ns  0±0.020 
- ER visits  0.6±1.0  0.018  0.1±0.3  ns  0.3±0.7  ns 
- Antibiotic treatment  0.6±1.1  0.030  0.2±0.5  ns  0.3±0.7  0.050 
- OCS treatment  0.6±1.2  0.003  0.1±0.2  0.015  0.2±0.4  ns 
- FEV1% predicted  78.8±15.8    --    81.0±21.0  ns 
- Number of errors in general  1.3±1.4  ns  2.1±2.2  0.003  0.7±1.1  0.050 
- Errors in DPI  1.0±1.0  ns  1.1±1.3  0.009  0.4±0.7  0.002 
- Errors in MDI  1.1±1.1  ns  1.0±0.9  ns  1.1±1.7  ns 
- Errors in SMI  --    --    --   
COPD             
- Severe exacerbations  1.3±2.0  0.002  0.3±0.9  ns  0.6±1.2  0.025 
- Hospitalizations  0.4±0.6  0.008  0.1±0.4  ns  0.1±0.4  ns 
- ER visits  0.9±1.5  0.002  0.2±0.6  0.046  0.5±1.0  ns 
- Antibiotic treatment  0.7±0.9  0.004  0.2±0.4  0.033  0.4±0.6  ns 
- OCS treatment  0.5±0.8  0.001  0.1±0.3  0.005  0.3±0.6  ns 
- FEV1% predicted  54.0±19.7    --    56.5±29.6  ns 
- Number of errors in general  2.5±2.7  0.011  1.7±1.9  ns  1.2±1.6  0.003 
- Errors in DPI  1.9±2.0  0.001  1.0±1.3  ns  0.8±1.3  0.001 
- Errors in MDI  1.9±1.4  0.016  1.1±0.8  ns  1.4±1.0  ns 
- Errors in SMI  1.5±0.6  ns  1.3±0.5  ns  0.2±0.4  ns 
ACO             
- Severe exacerbations  1.3±4.5  <0.001  0.3±1.5  0.002  0.6±1.5  0.009 
- Hospitalizations  0.3±1.0  ns  0.1±0.2  ns  0.1±0.5  ns 
- ER visits  2.4±9.4  ns  0.7±2.9  ns  0.9±2.5  ns 
- Antibiotic treatment  0.3±0.7  ns  0.1±0.2  0.020  0.5±0.7  ns 
- OCS treatment  0.5±1.2  ns  0.1±0.5  ns  0.3±0.6  ns 
- FEV1% predicted  51.1±15.5    --    53.6±16.4  ns 
- Number of errors in general  1.6±1.9  ns  2.0±1.8  ns  1.3±2.3  ns 
- Errors in DPI  0.9±1.1  ns  1.1±1.1  ns  0.6±1.1  ns 
- Errors in MDI  1.8±1.8  ns  1.2±1.2  ns  1.0±1.0  ns 
- Errors in SMI  1.7±1.2  ns  1.3±1.5  ns  2.3±4.0  ns 

Data presented in number (%) and average±standard deviation. ns: non-significant; DPI: dry powder inhalers; MDI: metered-dose inhalers; SMI: soft-mist inhalers; ER: emergency room; OCS: oral corticosteroids; FEV1: Forced Expiratory Volume in the first second; COPD: chronic obstructive pulmonary disease; ACO: asthma COPD overlap.

Figure 1.

Description of the number of errors per patient and per device type in each evaluation.

Each column represents the number (%) of errors per device type in every evaluation, from the first to the third, respectively from the top to the bottom. DPI: dry powder inhalers; MDI: metered-dose inhalers. DPI: first evaluation n=109, second evaluation n=99, third evaluation n=97; Respimat®: first evaluation n=8, second evaluation n=8, third evaluation n=11; MDI: first evaluation n=28, second evaluation n=56, third evaluation n=28.

(0.25MB).

Binary logistic regression indicates an odds ratio (OR) of 6.9 (95% CI 1.8–25.6, p=0.004) for multiple-inhalers users and an OR of 12.9 (95% CI 2.2–75.6, p=0.005) for those who make more errors. This implies a 6.9 and 12.9, respectively, increased risk of severe to moderate exacerbation in these patients, when controlling for gender, diagnosis, education level, treatment adherence, years of follow-up, symptoms and FEV1%.

This was a real-life study that demonstrated the issues related to inhaled treatment of the chronic obstructive lung diseases population: COPD patients, most of whom with a lower education status and a higher symptoms burden, showed a worse technique1; incorrect inhalation technique seems to increase with age, probably due to lung function decline and reduced hand strength and ability1,3,5; patients with at least one error had more exacerbations in the year before entering the study. These findings are consistent with studies previously published.1,2,4,6,7

Comparing the second and third evaluations, we recognize the differences between a shorter period to re-check inhalation technique (one month) against a longer one (six months). Though there was an overall improvement in both evaluations compared to the baseline, we emphasise that after a shorter period the technique and symptomatic improvement, with fewer exacerbations, was higher. These values increased slightly after five months. Therefore, this study reinforces the importance of providing regular educational training, especially within shorter periods of time, to enhance inhaler technique, ensure medication effectiveness, improve clinical management, and avoid unnecessary drug dose increments or drug modifications.1,2,4,6,7 Furthermore, this decline in exacerbations will lead to an impact in health care costs.1,5

To the best of our knowledge, there is only one Portuguese study that analysed COPD and asthma,5 which analysed a much smaller sample in two different periods. Our study included more variables and an additional evaluation, which strengthens our analysis. It shows that the positive effect of the educational intervention wanes over time stressing the need for periodic training reinforcement. Inhalation technique should, therefore, be reviewed at every appointment.

Authors contribution

Marta Nobre Pereira and Vanda Areias conceived the idea and design of the study. All the authors filled in questionnaires. Marta Nobre Pereira collected the data and wrote the manuscript. Vanda Areias revised it critically for important intellectual content. All the authors read and approved the final version.

Funding

There was no funding.

Conflicts of interest

The authors declare no conflict of interest.

References
[1]
O.S. Usmani, F. Lavorini, J. Marshall, W.C.N. Dunlop, L. Heron, E. Farrington, et al.
Critical inhaler errors in asthma and COPD: a systematic review of impact on health outcomes.
Respir Res., 19 (2018), pp. 10
[2]
C. Gregoriano, T. Dieterle, A.L. Breitenstein, S. Dürr, A. Baum, S. Maier, et al.
Use and inhalation technique of inhaled medication in patients with asthma and COPD: data from a randomized controlled trial.
Respir Res., 19 (2018), pp. 237
[3]
G.N. Rootmensen, A.R. van Keimpema, H.M. Jansen, R.J. de Haan.
Predictors of incorrect inhalation technique in patients with asthma or COPD: a study using a validated videotaped scoring method.
J Aerosol Med Pulm Drug Deliv., 23 (2010), pp. 323-328
[4]
M. Molimard, C. Raherison, S. Lignot, A. Balestra, S. Lamarque, A. Chartier, et al.
Chronic obstructive pulmonary disease exacerbation and inhaler device handling: real-life assessment of 2935 patients.
Eur Respir J, 49 (2017), pp. 1601794
[5]
T. Maricoto, S. Madanelo, L. Rodrigues, G. Teixeira, C. Valente, L. Andrade, et al.
Educational interventions to improve inhaler techniques and their impact on asthma and COPD control: a pilot effectiveness-implementation trial.
J Bras Pneumol., 42 (2016), pp. 440-443
[6]
T. Maricoto, L. Rodrigues, G. Teixeira, C. Valente, L. Andrade, A. Saraiva.
Assessment of inhalation technique in clinical and functional control of asthma and chronic obstructive pulmonary disease.
Acta Med Port., 28 (2015), pp. 702-707
[7]
S. Göriş, S. Taşci, F. Elmali.
The effects of training on inhaler technique and quality of life in patients with COPD.
J Aerosol Med Pulm Drug Deliv., 26 (2013), pp. 336-344
Copyright © 2021. Sociedade Portuguesa de Pneumologia
Pulmonology

Subscribe to our newsletter

Article options
Tools

Are you a health professional able to prescribe or dispense drugs?