Journal Information
Vol. 5. Issue 2.
Pages 158-173 (March - April 1999)
Share
Share
Download PDF
More article options
Vol. 5. Issue 2.
Pages 158-173 (March - April 1999)
Open Access
O efluxo celular e a insuficiente apoptose nos mecanismos de resistência aos antineoplásicos*
Visits
3779
H. Luz Rodrigues**
** Prof. Auxiliar de Farmacologia da Faculdade de Medicina de Lisboa
This item has received

Under a Creative Commons license
Article information
Full text is only aviable in PDF
BIBLIOGRAFIA
[1.]
Anonymous.
Clinical practice guidelines for the treatment of unresectable non-small-cell lung cancer.
J Clin Oncol, 15 (1997), pp. 2996
[2.]
R.S. Herbst, N.H. Dang, A.T. Skarin.
Chemotherapy for advanced non-small cell lung cancer.
Hematology/Oncology Clinics of North America, 11 (1997), pp. 473
[3.]
H.H. Hansen.
Management of small-cell cancer of the lung.
Lancet, 339 (1992), pp. 846
[4.]
P.G. Harper, M.B. Dally, et al.
Epipodophyllotoxin (VP16-213) in small cell carcinoma of the bronchus resistant to initial combination chemotherapy.
Cancer Chemother Pharmacal, 7 (1982), pp. 179
[5.]
T.W. Bellamy.
P-glycoproteins and multidrug resistance.
Annu Rev Pharmacol Toxicol., 36 (1996), pp. 161
[6.]
R. Grilli, A.D. Oxman, J.A. Julian.
Chemotherapy for advanced non-small-cell lung cancer: how much benefit is enough?.
J Clin Oncol, 11 (1993), pp. 1866
[7.]
P.R. Twentyman.
Mechanisms ofdrug resistance in lung cancer cells.
Lung Cancer Arnold, pp. 213
[8.]
W.T. Beck, W.S. Dalton.
Mechanisms of drug resistance.
Cancer, 5, pp. 498
[9.]
P. Gros, Y.B. Neriah, J.M. Croop, D.E. Housman.
Isolation and expression of a complementary DNA that confers multidrug resistance.
Nature, 323 (1986), pp. 728
[10.]
S.P.C. Cole, G. Bhardwaj, J.H. Gerlach, et al.
Overexpression of a transponer gene in a multidrug-resistant human lung cancer cell line.
Science, 258 (1992), pp. 1650
[11.]
A.F. List.
Non-P-glycoprotein drug export mechanism of multidrug resistance.
Semin Hematol., 34 (1997), pp. 20
[12.]
R.J. Scheper, H.J. Broxterman, G.L. Scheffer, P. Kaajjk, et al.
Overexpression of a M (r) 110,000 vesicular protein in non-Pglycoprotein mediated multidrug resistance.
Cancer Res, 53 (1993), pp. 1475
[13.]
A.F. List, C.S. Spier, T.M. Grogan, et al.
Overexpression of the major vault transporter protein LPR predicts outcome in AML.
Blood, 87 (1996), pp. 2464
[14.]
K. Dano.
Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells.
Biochim Biophys Acta, 323 (1973), pp. 466
[15.]
R.L. Juliano, V. Ling.
A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants.
Biochim Biophys Acta., 455 (1976), pp. 152
[16.]
S.P.C. Cole.
Multidrug resistance in human lung cancer and topoisomerase II.
Lung Cancer: Principles and practice, pp. 169
[17.]
W.R. Skach, M.C. Calavag, V.R. Lingappa.
Evidence for an alternate model of human P-glycoprotein structure and biogenesis.
J Biol Chem., 268 (1993), pp. 6903
[18.]
M.M. Gottesman, I. Pastan.
The multidrug transporter a double-edge sword.
J Biol Chem., 263 (1988), pp. 163
[19.]
A.H. Schinkel, J.J.M. Smit, O. Van Telungen, et al.
Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensibility to drugs.
Cell, 77 (1994), pp. 491
[20.]
A.H. Schinkel, M.O.L. Caam, E. Wagenaar, et al.
Multidrug resistance and the role of P-glycoprotein knockout mice.
Eur J Cancer., 31A (1995), pp. 1295
[21.]
L.J. Goldstein.
MDRI gene expression in solid tumors.
Eur. J Cancer, 32A (1996), pp. 1039
[22.]
J. Lankelma, H.S. Mulder, F. Van Mourik, et al.
Cellular daunomycin fluorescence in multidrug resistance 2780AD cells and its relation to cellular drug localisation.
Biochim Biophys Acta, 1093 (1991), pp. 147
[23.]
R. Dhjr, K. Grizzuti, S. Kajui, P. Gros.
Modulatory effects on substrate specificity of independent mutations at the serine 939,941 position in predicted transmembrane domain 11 of P-glycoprotein.
Biochemistry., 32 (1993), pp. 9492
[24.]
F.J. Sharom, X. Yu, C.A. Doige.
Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein.
J Bioi Chem, 268 (1993), pp. 24197
[25.]
T.W. Loo, D.M. Clarke.
Reconstitution of drug-stimulated ATPase activity following co-expression of each half of human P-glycoprotein as separate polypeptides.
J Bioi Chem., 269 (1994), pp. 7750
[26.]
K.E. Sampson, M.C. Mccroskey, I. Abraham.
Identification of a 170kDa membrane kinase with increased activity in KBV1 multidrug resistant cells.
J Cell Biochem, 52 (1993), pp. 384
[27.]
S.E. Bates, J.S. Lee, B. Dickstein, M. Spolyar, A.T. Fojo.
Differential modulation of P-glycoprotein transport by protein kinase inhibition.
Biochemistry, 32 (1993), pp. 9156
[28.]
T. Tsuruo, H. Lida, M. Nojiri, S. Tsukagoshi, Y. Sakurai.
Circumvention of vincristine and adriamycin resistance in vitro and in vivo by calcium influx blockers.
Cancer Res., 43 (1983), pp. 2905
[29.]
S.E. Salmon, W.S. Dalton, T.M. Grogan, et al.
Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer.
Blood, 78 (1991), pp. 44
[30.]
W.S. Dalton, J.J. Crowley, S.S. Salmon, et al.
A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma: a Southwest Oncology Group study.
Cancer, 75 (1995), pp. R15
[31.]
M.J. Millward, B.M.J. Cantwell, N.C. Munrp, et al.
Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study.
Br J Cancer., 67 (1993), pp. 1031
[32.]
R. Milroy.
A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer.
Br. J. Cancer., 68 (1993), pp. 813
[33.]
N.L. Baitlett, B.L. Lum, G.A. Fisher, et al.
Phase I trial of doxorubicin with cyclosporine as a multiator of multidrug resistance.
J Clin Oncol., 12 (1994), pp. 835
[34.]
H.M. Pinedo, G. Giaccone.
P-glycoprotein - a marker of cancer-cell behavior.
N. Engl. J. Med., 333 (1995), pp. 1417
[35.]
W.H. Wilson, S.E. Bates, A. Fojo, et al.
Controlled trial of dexverapamil, a modulator of multidrug resistance, in lymphomas refractory to EPOCH chemotherapy.
J Clio. Oncol., (1995), pp. 113
[36.]
D. Boesch, C. Gaveriaux, B. Jachez, et al.
In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833.
Cancer Res., 51 (1991), pp. 4226
[37.]
S.P.C. Cole.
Multidrug resistance in human lung cancer and topoisomerase II.
Lung Cancer: Principles and practice, pp. 169
[38.]
W.T. Beck, T.M. Grogan, C.L. Wilman, et al.
Methods to detect P-glycoprotein-associated multidrug resistance in patients tumors: Findings and consensus recommendations.
Cancer Res., 56 (1996), pp. 310
[39.]
J.G. Reeve, P.H. Rabbitis, P.R. Twentyman.
Non-Pglycoprotein-mediated multidrug resistance with reduced EGF receptor expression in a human large cell lung cancer cell line.
Br J Cancer, 61 (1990), pp. 851
[40.]
S.E.L. Mirski, J.H. Gerlach, S.P.C. Cole.
Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin.
Cancer Res., 47 (1987), pp. 2594
[41.]
S.P.C. Cole, G. Bhardwaj, J.H. Gerlach, et al.
Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.
Science, 258 (1992), pp. 1650
[42.]
E. Schneider, J.K. Honon, C.-H. Yang, M. Nakagawa, K.H. Cowan.
Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance.
Cancer Res., 54 (1994), pp. 152
[43.]
C.A. Slapak, P.M. Fracasso, R.L. Martell, et al.
Overexpression of the multidrug resistance associated protein (MRP) gene in vincristine but not doxorubicinselected multidrug resistant murine erythroleukemia cells.
Cancer Res., 54 (1994), pp. 607
[44.]
S.P.C. Cole, E.R. Chanda, F.P. Dicke, J.H. Gerlach, S.E.L. Mirskj.
Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: evidence for decreased susceptibility to drug- induced DNA damage and reduced levels of topoisomerase II.
Cancer Res, 51 (1991), pp. 3345
[45.]
M.R. Abbaszadegan, B.W. Futscher, W.T. Klimecki, A. List, W.S. Dalton.
Analysis of multidrug resistance-associated protein (MRP) messenger RNA in normal and malignant hematopoietic cells.
Cancer Res., 54 (1994), pp. 4676
[46.]
M. Gao, M. Yamazaki, D.W. Loe, et al.
Multidrug resistance protein. Identification of regions required for active transport of leukotriene C4.
J. Biol. Chem, 273 (1998), pp. 10733
[47.]
M.A. Barrand, T. Bagrjj, S.Y. Neo.
Multidrug resistance-associated protein: a protein distinct from P-glycoprotein involved in cytotoxic drug expulsion.
Gen Pharmacal, 2R (1997), pp. 639
[48.]
M.A. Barrand, T. Rhodes, M.S. Center, P.R. Twentyman.
Chemosensitisation and drug accumulation effects of cyclosporine A, PSC833 and verapamil in human MDR large cell lung cancer cells expressing a 190k membrane protein distinct from P-glycoprotein.
Eur. J. Cancer, 29 (1993), pp. 408
[49.]
G.J. Zaman, J. Lankelma, O. Van Tellingen, et al.
Role of glutathione in the export compounds from cells by the multi drug resistance-associated protein.
Proc. Natl Acad. Sci. USA, 92 (1995), pp. 7690
[50.]
R.J. Scheper, H.J. Broxterman, G.L. Scheffer, P. Kaaijk, et al.
Overexpression of a M (r) 110,000 vesicular protein in non-Pglycoprotein mediated multidrug resistance.
Cancer Res., 53 (1993), pp. 1475
[51.]
G.L. Scheffer, P.L.J. Wijngaard, M.J. Flens, et al.
The drug resistance related protein LPR is a major vault protein.
Nature Med., 1 (1995), pp. 578
[52.]
N.L. Kedersha, L.H. Rome.
Isolation and characterization of a novel ribonucleoprotein panicle: large structures contain a single species of small RNA.
J. Cell. Biol., 103 (1986), pp. 699
[53.]
D.C. Chugani, L.H. Rome, N.L. Kedersha.
Evidence that vault ribonucleoprotein particles localize to the nucleopore complex.
J. Cell Sci, 106 (1993), pp. 23
[54.]
M.A. Izquierdo, A.G.J. Vanderzee, I.D. Vermorken, et al.
Drug resistance-associated marker LRP for prediction of response to chemotherapy and prognosis in advanced ovarian carcinoma.
J. Natl. Cancer lnst., 87 (1995), pp. 1230
[55.]
L.H. Hastwell, M.B. Kastan.
Cell cycle control and cancer.
Science, 266 (1994), pp. 1821
[56.]
V.T. Devita Jr..
Principles of cancer management: chemotherapy.
Cancer: principles and practice of oncology, 5, pp. 333
[57.]
M. Oren.
p53: the ultimate tumor suppressor gene?.
FASEB J., 6 (1992), pp. 3169
[58.]
J.D. Minna, Y. Sekido, K.M. Fong, A.F. Gazdar.
Cancer of the lung.
Cancer: principles and practice of oncology, 5, pp. 849
[59.]
M.A. Pdus, F. Pezzella, J.C. Madinez-Montero, et al.
P53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time.
Br. J. Cancer., 69 (1994), pp. 337
[60.]
J.M. Lee, A. Bernstein.
A P53 mutations increase resistance to ionizing radiation.
Proc. Natl. Acad Sci. USA, 90 (1993), pp. 5742
[61.]
D.P. Lane.
A death in the life of p53.
Nature., 362 (1993), pp. 786
[62.]
W. Lowes, S. Bodis, A. McClatchey, et al.
P53 status and the efficacy of cancer therapy in vivo.
Science, 266 (1994), pp. 807
[63.]
M.D. Smith, I.-T. Chen, Q. Zhan, et al.
Interaction of the p53-regulated protein Gadd 45 with proliferating cell nuclear antigen.
Science., 266 (1994), pp. 1376
[64.]
K.V. Chin, K. Veda, I. Pastan, M.M. Gottesman.
Modulation of activity ofthe promoter of the human MDR J gene by Ras and p53.
Science., 255 (1992), pp. 459
[65.]
C.C. Hamjs, M. Hollstein.
Clinical implications of the p53 tumor-suppressor gene.
N. Engl. J. Med., 329 (1993), pp. 1318
[66.]
T. Friedman.
Gene therapy of cancer through restoration of tumor-suppressor functions?.
Cancer, 70 (1992), pp. 1810
[67.]
J.A. Roth, D. Nguyen, B.L. Kemp, et al.
Retrovirus-mediated wild type p53 gene transfer to tumors of patients with lung cancer.
Nature Med, 2 (1996), pp. 985
[68.]
M. Larkin.
Promising results reported for lung cancer gene therapy.
[69.]
T. Sethi.
Lung Cancer.
BMJ, 314 (1997), pp. 652
[70.]
T.W. Sedlak, Z.N. Ohvai, E.M. Yang, et al.
Multiple Bcl2 family members demonstrate selective dimerizations with Bax.
Proc. Natl. Acad. Sci. USA, 92 (1995), pp. 7834
[71.]
S.J. Korsmeyer, X.M. Yin, Z.N. Oltvai, et al.
Reactive oxygen species and the regulation of cell death by the bcl-2 gene family.
Biochem Biophys Acta., 1271 (1995), pp. 63
[72.]
A. Oliff, S.H. Friend.
Molecular targets for drug development.
Cancer: principles and practice of oncology, 5, pp. 3115

Texto referente á intervenção do Autor no Paínel “Resistência a Fármacos” (XIV Congresso da SPP, Viseu)

Copyright © 1999. Sociedade Portuguesa de Pneumologia/SPP
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?