Journal Information
Vol. 15. Issue 4.
Pages 669-682 (July - August 2009)
Share
Share
Download PDF
More article options
Vol. 15. Issue 4.
Pages 669-682 (July - August 2009)
Full text access
Modelos experimentais em oncologia: O contributo da cultura de células para o conhecimento da biologia do cancro
Experimental models in oncology: Contribution of cell culture on understanding the biology of cancer
Visits
907
Mariana Cruz1, Margarida Enes1, Marta Pereira1, Marília Dourado2,3, Ana Bela Sarmento Ribeiro2,4
1 Aluna do 6.° ano de Medicina da Faculdade de Medicina da Universidade de Coimbra 2007-2008
2 Professora da Faculdade de Medicina da Universidade de Coimbra
3 Disciplina de Fisiopatologia, mestrado integrado em Medicina Dentária
4 Instituto de Bioquímica e disciplina de Biologia Molecular Aplicada. Mestrado integrado em Medicina
This item has received
Article information
Resumo

A cultura de tecidos surgiu no século xx (Harrison, 1907) para estudar o comportamento das células animais em ambiente homeostático e em situações de stress.

A capacidade de estudar as células a nível molecular relaciona-se com a forma como as células podem crescer e ser manipuladas em laboratório. A cultura de células in vitro permitiu estudar crescimento, diferenciação e morte celular e efectuar manipulações genéticas necessárias ao perfeito conhecimento da estrutura e funções dos genes.

A cultura de células estaminais humanas veio colmatar algumas limitações inerentes aos restantes modelos de cultura. Ao que parece, as células estaminais cancerígenas mantêm-se quiescentes nos locais me tastáticos até serem activadas por sinais apropriados do microambiente.

Vários estudos revelaram que diferentes tipos de cancros podem surgir da transformação maligna de células estaminais. A eliminação destas células progenitoras tumorais é essencial para o desenvolvimento de novas abordagens terapêuticas mais eficazes em cancros agressivos. Por outro lado, a utilização de células dendríticas modificadas em cultura poderá contribuir para a produção de uma potencial vacina terapêutica eficaz para obter a regressão tumoral.

Palavras-chave:
Cultura de células
oncologia
células dendríticas
terapêutica
Abstract

In the beginning of the 20th century, tissue culture was started with the aim of studying the behaviour of animal cells in normal and stress conditions.

The cell study at molecular level depends on their capacity of growing and how they can be manipulated in laboratory. In vitro cell culture allows us the possibility of studying biological key processes, such as growth, differentiation and cell death, and also to do genetic manipulations essential to the knowledge of structure and genes function.

Human stem cells culture provides strategies to circumvent other models’ deficiencies.

It seems that cancer stem cells remain quiescent until activation by appropriated micro-environmental stimulation.

Several studies reveal that different cancer types could be due to stem cell malignant transformations. Removal of these cells is essential to the development of more effective cancer therapies for advanced disease. On the other hand, dendritic cells modified in culture may be used as a therapeutic vaccine in order to induce tumour withraw

Key-words:
Cell culture
oncology
dendritic cells
therapy
Full text is only aviable in PDF
Bibliografia
[1.]
Alberts Bruce, D. Bray, J. Lewis.
Biologia molecular da célula.
3.a edição, Editora Artes Médicas, (1997),
[2.]
M. Susan Lindee.
The culture of cell culture.
Science, 316 (2007), pp. 1568-1569
[3.]
R. Ian, Freshney.
Culture of animal cells – A manual of basic technique.
Second edition., Alan R Liss, Inc, (1987),
[4.]
Dean Michael.
Cancer stem cells: redefining the paradigm of cancer treatment strategies.
Molecular Interventions, 6 (2006), pp. 140-148
[5.]
Stem cells and the future of regenerative medicine – Free executive summary. 2002; National Academy of Sciences. http://www.nap.edu/catalog/10195.html.
[6.]
Mimeault Murielle, K. Batra Surinder.
Concise Review. Recent advances on the significance of stem cells in tissue regeneration and cancer therapies.
Stem cells, 24 (2006), pp. 2319-2345
[7.]
Reya. Tannishtha, S.J. Morrison, M.F. Clarke, I.L. Weissman.
Stem cells, cancer and cancer stem cells.
Nature, 414 (2001), pp. 105-111
[8.]
S.H. Cedar.
The function of stem cells and their future roles in health care.
Br J Nurs, 15 (2006), pp. 104-107
[9.]
Margarida Vieira, Gomes A, Castelo-Branco G, Santos R. Células estaminais em obstetrícia e ginecologia, Parte I: conceitos gerais e aplicações. www.crioestami nal.pt/web/eng/pdfs.
[10.]
Guzman Monica L., C.T. Jordan.
Considerations for targeting malignant stem cells in leukemia.
Cancer Control, 11 (2004), pp. 97-104
[11.]
M.A. Socinski, R. Crowell, T.E. Hensing, et al.
Treatment of non small cell lung cancer stage IV – ACCP Evidence Based Pratice Guidelines.
Chest, 132 (2007), pp. 277-289
[12.]
F. Barata, T. Costa, A. Figueiredo.
Erlotinib e matástases cerebrais.
Rev Port Pneumol, XIV (2008), pp. S35-S42
[13.]
C. Philip, Hoffman, A.M. Mauer, E.E. Vokes.
Lung cancer.
[14.]
Ferreira Alves Ana, M. Liebermann.
Inibidores da tirosina-cinase no CPNPC avançado: A propósito de um caso clínico.
Rev Port Pneumol, 14 (2008), pp. S23-S28
[15.]
NCCN Clinical Practice Guidelines in Oncology.
Non-Small Cell Lung Cancer, (2008),
[16.]
E.S. Kim, et al.
Epidermal growth receptor biology (IMC-C225).
Cur Op Onc, 13 (2001), pp. 506-513
[17.]
Guimarães. Teresa, A. Castro, N. Cortesão, J. Ferreira, F. João.
Erlotinib no controlo tumoral prolongado do carcinona do pulmão de não pequenas células avançado (CPNPC).
Rev Port Pneumol, 14 (2008), pp. S9-S15
[18.]
T.M. Chin, M.P. Quinlan, A. Singh, L.V. Sequist, T.J. Lynch, D.A. Haber, S.V. Sharma, J. Settleman.
Reduced erlotinib sensitivity of epidermal growth factor receptor-mutant non-small cell lung cancer following cisplatin exposure: A cell culture model of second-line erlotinib treatment.
Clin Cancer Res, 14 (2008), pp. 6867-6876
[19.]
A. Araújo, M. Soares, I. Azevedo, A. Araújo.
Erlotinib na segunda linha de tratamento do cancro do pulmão de não pequenas células – Caso clínico.
Rev Port Pneumol, 14 (2008), pp. S170-S222
[20.]
S. Roy, Herbst, A. Onn, A. Sandler.
Angiogenesis and Lung Cancer: Prognostic and therapeutic implications.
J Clin Oncol, 23 (2005), pp. 3243-3256
[21.]
M. Jonathan.
Ng. Designing a Vaccine for cancer: a look into dendritic cell cancer vaccine.
McMaster Educater, 3 (2004), pp. 13-18
[22.]
J.J. Mulé.
Dendritic cell-based vaccines for the treatment of cancer.
Michigan Oncology Journal, (1998),
[23.]
J.A. Kyte, G. Gaudernack.
Immuno-gene therapy of cancer with tumor-mRNA transfected dendritic cells.
Cancer Immunology Immunother, (2006),
[24.]
E. Gilboa, S.K. Nair, H.K. Lyerly.
Immunotherapy of cancer with dendritic cell-based vaccines.
Cancer Immunology Immunother, 46 (1998), pp. 82-87
[25.]
Bohnenkamp H. Process development for the generation of matured monocyte-derived dendritic cells suitable for clinical aplication. www.Fz-juelich.de/ibt/cell/matured-dendritic-cells.2006.
[26.]
Vieweg J. Dendritic cell therapy for GU malignancies. State of the science – Genitourinary 2002; 14;.(www.webtie.org/SOTS/Meetings/Genitourinary/SUO_12_13_14_2002/lectures.htm).
[27.]
B. Wang, J. He, C. Lui, L.J. Chang.
An effective cancer vaccine modality: lentiviral modification of dendritic cells expressing multiple cancer-specific antigens.
Vaccine, 24 (2006), pp. 3477-3489
[28.]
J.A. Khan, S. Yaqin.
Dendritic cell therapy with improved outcome in glioma multiformr – A case report.
J Zhejiang University Sc B, 7 (2006), pp. 114-117
[29.]
A. Ribas.
Genetically modified dendritic cells for cancer immunotherapy.
Curr Gene Therapy, 5 (2005), pp. 619-628
[30.]
L. Fong, E.G. Engleman.
Dendritic cells in cancer immunotherapy.
Annual Rev Immunol, 18 (2000), pp. 245-273
[31.]
E.J. Small, P. Fratesi, D.M. Reese, G. Strang.
Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells.
J Clinical Oncol, 18 (2000), pp. 3894-3903
[32.]
F.O. Nestle, S. Alijagic, M. Gilliet, Y. Sun.
Vaccinations of melanoma patients with peptide or tumor lysate-pulsed dendritic cells.
Nat Med, 4 (1998), pp. 328-332
[33.]
J.M. Timmerman, R. Levy.
Dendritic cell vaccines for cancer immunotherapy.
Annual Rev Medicine, 50 (1999), pp. 507-529
[34.]
W.J. Lesterhuis, L.J. Vries, D.H. Schuurhuis.
Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen specific T cell responses in DTH skin test.
Annual Oncology, 17 (2006), pp. 974-980
[35.]
A.D. Santin, S. Bellone, L.J. Underwood, et al.
Dendritic cell-based immunotherapy for ovarian cancer.
Minerva Ginecol, 54 (2002), pp. 133-144
[36.]
G. Liu, K.L. Black, J.S. Yu.
Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination.
Expert Rev Vaccines, 5 (2006), pp. 233-247
[37.]
A. Farkas, C. Conrad, G. Tonel.
Current state and perspectives of dendritic cell vaccination in cancer immunotherapy.
Skin Pharmacol Physiol, 19 (2006), pp. 124-131
Copyright © 2009. Sociedade Portuguesa de Pneumologia
Download PDF
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?