array:24 [
  "pii" => "S253104372200126X"
  "issn" => "25310437"
  "doi" => "10.1016/j.pulmoe.2022.05.006"
  "estado" => "S300"
  "fechaPublicacion" => "2023-03-01"
  "aid" => "1758"
  "copyright" => "Sociedade Portuguesa de Pneumologia"
  "copyrightAnyo" => "2022"
  "documento" => "simple-article"
  "crossmark" => 1
  "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
  "subdocumento" => "cor"
  "cita" => "Pulmonol. 2023;29:154-6"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "itemSiguiente" => array:19 [
    "pii" => "S2531043722002008"
    "issn" => "25310437"
    "doi" => "10.1016/j.pulmoe.2022.07.015"
    "estado" => "S300"
    "fechaPublicacion" => "2023-03-01"
    "aid" => "1786"
    "copyright" => "Sociedade Portuguesa de Pneumologia"
    "documento" => "simple-article"
    "crossmark" => 1
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "cor"
    "cita" => "Pulmonol. 2023;29:157-9"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:9 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
      "titulo" => "How COVID-19 changed our bronchoscopy procedures&#58; A comparison with the Portuguese Pulmonology Society Recommendations"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "157"
          "paginaFinal" => "159"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "A&#46; Jniene, A&#46; Rhanim, L&#46; Herrak, L&#46; Achachi, M&#46; El Ftouh"
          "autores" => array:5 [
            0 => array:2 [
              "nombre" => "A&#46;"
              "apellidos" => "Jniene"
            ]
            1 => array:2 [
              "nombre" => "A&#46;"
              "apellidos" => "Rhanim"
            ]
            2 => array:2 [
              "nombre" => "L&#46;"
              "apellidos" => "Herrak"
            ]
            3 => array:2 [
              "nombre" => "L&#46;"
              "apellidos" => "Achachi"
            ]
            4 => array:2 [
              "nombre" => "M&#46; El"
              "apellidos" => "Ftouh"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043722002008?idApp=UINPBA00004E"
    "url" => "/25310437/0000002900000002/v1_202303021319/S2531043722002008/v1_202303021319/en/main.assets"
  ]
  "itemAnterior" => array:19 [
    "pii" => "S2531043722002185"
    "issn" => "25310437"
    "doi" => "10.1016/j.pulmoe.2022.09.006"
    "estado" => "S300"
    "fechaPublicacion" => "2023-03-01"
    "aid" => "1801"
    "copyright" => "Sociedade Portuguesa de Pneumologia"
    "documento" => "simple-article"
    "crossmark" => 1
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "cor"
    "cita" => "Pulmonol. 2023;29:151-3"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:10 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
      "titulo" => "Durability of COVID-19 vaccine induced T-cell mediated immune responses measured using the QuantiFERON SARS-CoV-2 assay"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "151"
          "paginaFinal" => "153"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:8 [
          "identificador" => "fig0001"
          "etiqueta" => "Fig&#46; 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 935
              "Ancho" => 1500
              "Tamanyo" => 106796
            ]
          ]
          "detalles" => array:1 [
            0 => array:3 [
              "identificador" => "alt0001"
              "detalle" => "Fig "
              "rol" => "short"
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Comparison of QFN SARS-CoV-2 antigen tube &#40;Nil subtracted&#41; T-cell mediated immune response in subjects receiving an initial 2-dose vaccination with the mRNA-1273 or BNT162b2 vaccines&#46; A Mann-Whitney test was used to compare responses between vaccines at the 2-week and 7&#8211;9-month timepoints&#46;</p> <p id="spara002" class="elsevierStyleSimplePara elsevierViewall">Dots represent individual test points and columns represent median responses within the test cohort&#46; Not all subjects had specimens collected at all timepoints&#46;</p> <p id="spara003" class="elsevierStyleSimplePara elsevierViewall">Ag&#44; antigen tube&#59; IU&#44; international units&#59; m&#58; months&#59; ns&#58; non-significant&#59; wk&#44; weeks&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "F&#46; Stieber, N&#46; Allen, K&#46; Carpenter, P&#46; Hu, R&#46; Alagna, S&#46; Rao, D&#46; Manissero, J&#46; Howard, V&#46; Nikolayevskyy"
          "autores" => array:9 [
            0 => array:2 [
              "nombre" => "F&#46;"
              "apellidos" => "Stieber"
            ]
            1 => array:2 [
              "nombre" => "N&#46;"
              "apellidos" => "Allen"
            ]
            2 => array:2 [
              "nombre" => "K&#46;"
              "apellidos" => "Carpenter"
            ]
            3 => array:2 [
              "nombre" => "P&#46;"
              "apellidos" => "Hu"
            ]
            4 => array:2 [
              "nombre" => "R&#46;"
              "apellidos" => "Alagna"
            ]
            5 => array:2 [
              "nombre" => "S&#46;"
              "apellidos" => "Rao"
            ]
            6 => array:2 [
              "nombre" => "D&#46;"
              "apellidos" => "Manissero"
            ]
            7 => array:2 [
              "nombre" => "J&#46;"
              "apellidos" => "Howard"
            ]
            8 => array:2 [
              "nombre" => "V&#46;"
              "apellidos" => "Nikolayevskyy"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2531043722002185?idApp=UINPBA00004E"
    "url" => "/25310437/0000002900000002/v1_202303021319/S2531043722002185/v1_202303021319/en/main.assets"
  ]
  "en" => array:17 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
    "titulo" => "Flow-controlled ventilation may reduce mechanical power and increase ventilatory efficiency in severe coronavirus disease-19 acute respiratory distress syndrome"
    "tieneTextoCompleto" => true
    "saludo" => "<span class="elsevierStyleItalic">To the Editor</span>&#44;"
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "154"
        "paginaFinal" => "156"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "A&#46; Grassetto, T&#46; Pettenuzzo, F&#46; Badii, R&#46; Carlon, N&#46; Sella, P&#46; Navalesi"
        "autores" => array:6 [
          0 => array:4 [
            "nombre" => "A&#46;"
            "apellidos" => "Grassetto"
            "email" => array:1 [
              0 => "alberto.grassetto@aulss2.veneto.it"
            ]
            "referencia" => array:3 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0001"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#35;</span>"
                "identificador" => "fn1"
              ]
              2 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0001"
              ]
            ]
          ]
          1 => array:3 [
            "nombre" => "T&#46;"
            "apellidos" => "Pettenuzzo"
            "referencia" => array:2 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0002"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#35;</span>"
                "identificador" => "fn1"
              ]
            ]
          ]
          2 => array:3 [
            "nombre" => "F&#46;"
            "apellidos" => "Badii"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0001"
              ]
            ]
          ]
          3 => array:3 [
            "nombre" => "R&#46;"
            "apellidos" => "Carlon"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0001"
              ]
            ]
          ]
          4 => array:3 [
            "nombre" => "N&#46;"
            "apellidos" => "Sella"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0002"
              ]
            ]
          ]
          5 => array:3 [
            "nombre" => "P&#46;"
            "apellidos" => "Navalesi"
            "referencia" => array:2 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0002"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0003"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:3 [
          0 => array:3 [
            "entidad" => "Anesthesia and Intensive Care&#44; Vittorio Veneto Hospital&#44; Via C&#46; Forlanini 71&#44; 31029 Vittorio Veneto&#44; Italy"
            "etiqueta" => "a"
            "identificador" => "aff0001"
          ]
          1 => array:3 [
            "entidad" => "Institute of Anesthesiology and Intensive Care&#44; Padua University Hospital&#44; Padua&#44; Via V&#46; Gallucci 13&#44; 35121 Padua&#44; Italy"
            "etiqueta" => "b"
            "identificador" => "aff0002"
          ]
          2 => array:3 [
            "entidad" => "Department of Medicine&#44; University of Padua&#44; Via Giustiniani 2&#44; 35128 Padua&#44; Italy"
            "etiqueta" => "c"
            "identificador" => "aff0003"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0001"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author at&#58; Anesthesia and Intensive Care&#44; Vittorio Veneto Hospital&#44; Via C&#46; Forlanini 71&#44; 31029&#44; Vittorio Veneto&#44; Italy&#46;"
          ]
        ]
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="para0004" class="elsevierStylePara elsevierViewall">The prevention of ventilator-induced lung injury &#40;VILI&#41; is the mainstay of the management of mechanical ventilation in patients with acute respiratory distress syndrome &#40;ARDS&#41;&#46;<a class="elsevierStyleCrossRef" href="#bib0001"><span class="elsevierStyleSup">1</span></a> Official guidelines have focused on tidal volume&#44; plateau pressure &#40;Pplat&#41;&#44; positive end-expiratory pressure &#40;PEEP&#41;&#44; and driving pressure &#40;DP&#41;&#44; i&#46;e&#46;&#44; the difference between Pplat and PEEP&#44; to identify lung-protective ventilation strategies&#46;<a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a> However&#44; even values of tidal volumes and Pplat that are normally considered safe may result in injurious ventilation&#46;<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a></p><p id="para0005" class="elsevierStylePara elsevierViewall">Mechanical power &#40;MP&#41; represents the total energy transferred from the mechanical ventilator to the lungs during inflation and includes dynamic variables such as inspiratory flow rate and breathing frequency&#46;<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> Some studies suggest that MP may predict mortality in ARDS patients<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> and that higher inspiratory flow rates increase the risk of VILI in patients with mild to moderate ARDS&#46;<a class="elsevierStyleCrossRef" href="#bib0004"><span class="elsevierStyleSup">4</span></a></p><p id="para0006" class="elsevierStylePara elsevierViewall">The lungs of patients with coronavirus disease &#40;COVID&#41;-19 related ARDS are characterized by parenchymal heterogeneity&#44; leading to regional differences in pulmonary mechanical properties&#46;<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">5</span></a> Consequently&#44; higher velocities of lung inflation may drive a greater fraction of tidal volume to alveolar units with shorter time constant and unevenly amplify lung stress in some regions&#46;<a class="elsevierStyleCrossRef" href="#bib0003"><span class="elsevierStyleSup">3</span></a> Therefore&#44; reducing flow rates might be beneficial&#46;</p><p id="para0007" class="elsevierStylePara elsevierViewall">Flow-controlled ventilation &#40;FCV&#41; &#40;Evone&#174;&#44; Ventinova Medical&#44; Eindhoven&#44; The Netherlands&#41; is a ventilatory mode where both inspiratory and expiratory flow rates are maintained constant and &#60; 20 L&#47;min throughout the respiratory cycle by regulating tracheal pressure&#44; as measured through a dedicated lumen opening at the distal end of the endotracheal tube&#46;<a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a> During FCV&#44; the inspiratory flow rate&#44; inspiratory to expiratory ratio&#44; peak inspiratory pressure &#40;Ppeak&#41;&#44; end-expiratory pressure &#40;EEP&#41;&#44; and the inspiratory concentration of oxygen are pre-set&#44; whereas tidal volume and respiratory rate vary depending on ventilator settings and the patient&#39;s respiratory mechanics&#46;<a class="elsevierStyleCrossRef" href="#bib0007"><span class="elsevierStyleSup">7</span></a> Some studies observed improved lung recruitment&#44; more homogeneous lung aeration&#44;<a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a><span class="elsevierStyleSup">&#44;</span><a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a><span class="elsevierStyleSup">&#44;</span><a class="elsevierStyleCrossRef" href="#bib0009"><span class="elsevierStyleSup">9</span></a> better gas exchange&#44;<a class="elsevierStyleCrossRefs" href="#bib0008"><span class="elsevierStyleSup">8-12</span></a> and attenuated experimental lung injury with FCV&#44;<a class="elsevierStyleCrossRef" href="#bib0012"><span class="elsevierStyleSup">12</span></a><span class="elsevierStyleSup">&#44;</span> compared to volume-targeted mechanical ventilation &#40;conventional mechanical ventilation&#44; CMV&#41;&#46; We hypothesize that FCV would reduce MP and ventilatory ratio &#40;VR&#41; in COVID-19 patients developing refractory hypoxemia despite optimization of CMV and prone positioning&#46;</p><p id="para0008" class="elsevierStylePara elsevierViewall">This pilot study was performed in 10 sedated and paralyzed COVID-19 ARDS patients admitted to the intensive care unit with arterial partial pressure of oxygen to inspired oxygen fraction ratio &#40;PaO2&#47;FiO2&#41; &#60; 150 mmHg during CMV while in prone position for at least 12 consecutive hours&#46;<a class="elsevierStyleCrossRef" href="#bib0002"><span class="elsevierStyleSup">2</span></a> Inspiratory and expiratory flow rates were initially set at 15 L&#47;min with inspiratory to expiratory ratio 1&#58;1&#44; while EEP was equal to PEEP and Ppeak to Pplat during CMV&#44; thereby maintaining approximately the same DP and consequently similar tidal volumes&#46; All measurements were obtained in CMV prior to switching to FCV &#40;CMV1&#41;&#44; after 4 hours of FCV&#44; and then again after 4 hours of CMV &#40;CMV2&#41;&#46; All variables are reported as median &#40;interquartile range&#41; and compared using the Friedman test&#44; followed by pairwise comparison with Wilcoxon signed-rank test and <span class="elsevierStyleItalic">post-hoc</span> Bonferroni correction&#46; All statistical tests were two-tailed and statistical significance was defined as p&#60;0&#46;05&#46;</p><p id="para0009" class="elsevierStylePara elsevierViewall">Patient age was 59 &#40;55-57&#41; years and the predicted body weight 65 &#40;59-68&#41; kg&#46; Nine &#40;90&#37;&#41; patients survived the hospital stay&#46; As reported in <a class="elsevierStyleCrossRef" href="#tbl0001">Table 1</a>&#44; during FCV inspiratory flow rate&#44; respiratory rate&#44; and minute ventilation were all decreased&#44; compared to both CMV1 and CMV2&#46; During FCV the MP was 10&#46;8 &#40;9&#46;9-13&#46;4&#41; J&#47;min&#44; as opposed to CMV1 &#91;22&#46;7 &#40;20&#46;3-25&#46;6&#41; J&#47;min &#40;p&#61;0&#46;006&#41;&#93; and CMV2 &#91;20&#46;1 &#40;19&#46;0-24&#46;0&#41; J&#47;min &#40;p&#61;0&#46;006&#41;&#93;&#44; and VR was 1&#46;40 &#40;1&#46;28-1&#46;44&#41;&#44; as compared with CMV1 &#91;2&#46;22 &#40;1&#46;90-2&#46;56&#41; &#40;p&#61;0&#46;006&#41;&#93; and CMV2 &#91;2&#46;20 &#40;1&#46;79-2&#46;57&#41; &#40;p&#61;0&#46;006&#41;&#93;&#46; Arterial partial pressure of carbon dioxide&#44; pH&#44; and PaO2&#47;FiO2 were not significantly different among the three conditions&#46;</p><elsevierMultimedia ident="tbl0001"></elsevierMultimedia><p id="para0010" class="elsevierStylePara elsevierViewall">Our study evaluating a series of 10 consecutive patients affected by COVID-19 with refractory hypoxemia&#44; despite prone positioning while receiving CMV&#44; suggests that FCV may be associated with some advantages&#46; First&#44; the application of FCV resulted in decreased MP&#44; as a consequence of lower inspiratory flow rates and breathing frequencies&#44; potentially reducing the dissipated energy&#46;<a class="elsevierStyleCrossRef" href="#bib0007"><span class="elsevierStyleSup">7</span></a><span class="elsevierStyleSup">&#44;</span><a class="elsevierStyleCrossRef" href="#bib0012"><span class="elsevierStyleSup">12</span></a><span class="elsevierStyleSup">&#44;</span><a class="elsevierStyleCrossRef" href="#bib0013"><span class="elsevierStyleSup">13</span></a> Indeed&#44; FCV was shown to reduce MP<a class="elsevierStyleCrossRef" href="#bib0011"><span class="elsevierStyleSup">11</span></a> and attenuate VILI through this mechanism in porcine models&#46;<a class="elsevierStyleCrossRef" href="#bib0012"><span class="elsevierStyleSup">12</span></a> Second&#44; our results are in keeping with preclinical<a class="elsevierStyleCrossRef" href="#bib0008"><span class="elsevierStyleSup">8</span></a><span class="elsevierStyleSup">&#44;</span><a class="elsevierStyleCrossRef" href="#bib0009"><span class="elsevierStyleSup">9</span></a><span class="elsevierStyleSup">&#44;</span><a class="elsevierStyleCrossRef" href="#bib0012"><span class="elsevierStyleSup">12</span></a> and clinical studies&#44;<a class="elsevierStyleCrossRef" href="#bib0006"><span class="elsevierStyleSup">6</span></a><span class="elsevierStyleSup">&#44;</span> demonstrating higher ventilatory efficiency&#44; probably related to improved intrapulmonary distribution of ventilation with FCV&#46; Third&#44; although we did not observe any significant improvement in gas exchange with FCV&#44; previous studies reported better oxygenation and carbon dioxide elimination with this mode&#46;<a class="elsevierStyleCrossRefs" href="#bib0008"><span class="elsevierStyleSup">8-12</span></a><span class="elsevierStyleSup">&#44;</span> Therefore&#44; our study extends to the critical illness setting the current evidence&#44; mainly limited to preclinical studies and small clinical studies performed in the operating room&#44; suggesting that FCV might reduce VILI&#44; while maintaining adequate gas exchanges&#46;</p><p id="para0011" class="elsevierStylePara elsevierViewall">Our study has important limitations&#46; First&#44; the small sample size makes our findings exploratory and hypothesis-generating&#46; Larger prospective studies are necessary to confirm these results and support clinical studies ascertaining the impact of FCV on clinical outcomes&#46; Second&#44; the external validity and the generalizability of our findings to patients with acute respiratory failure of different etiology need to be assessed&#46; Furthermore&#44; we cannot rule out that different dead space of the ventilator apparatus may have contributed to the improvement of VR with FCV&#46; However&#44; this is unlikely because we always used an active humidifier before the Y-piece of the respiratory circuit during CMV&#46;</p><p id="para0012" class="elsevierStylePara elsevierViewall">In conclusion&#44; FCV reduced MP and VR in a small cohort of severely hypoxemic COVID-19 patients receiving CMV and prone positioning&#46;</p><span id="sec0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0003">Authors&#39; contributions</span><p id="para0013" class="elsevierStylePara elsevierViewall">Conception and design of the study&#58; AG&#44; TP&#46; Acquisition of the data&#58; AG&#44; FB&#44; RC&#46; Analysis of the data&#58; AG&#44; TP&#44; NS&#46; Interpretation of the data&#58; all authors&#46; Drafting of the manuscript&#58; AG&#44; TP&#44; NS&#44; PN&#46; Critical revision of the manuscript for important intellectual content&#58; All authors&#46; Final approval of the version to be submitted&#58; all authors&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:2 [
        0 => array:2 [
          "identificador" => "sec0001"
          "titulo" => "Authors&#39; contributions"
        ]
        1 => array:1 [
          "titulo" => "References"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "fechaRecibido" => "2022-04-11"
    "fechaAceptado" => "2022-05-20"
    "NotaPie" => array:1 [
      0 => array:3 [
        "etiqueta" => "&#35;"
        "nota" => "<p class="elsevierStyleNotepara" id="notep0001">Equal contribution&#46;</p>"
        "identificador" => "fn1"
      ]
    ]
    "multimedia" => array:1 [
      0 => array:8 [
        "identificador" => "tbl0001"
        "etiqueta" => "Table 1"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "detalles" => array:1 [
          0 => array:3 [
            "identificador" => "alt0001"
            "detalle" => "Table "
            "rol" => "short"
          ]
        ]
        "tabla" => array:3 [
          "leyenda" => "<p id="spara003" class="elsevierStyleSimplePara elsevierViewall">Abbreviations&#58; CMV&#44; conventional mechanical ventilation&#59; FCV&#44; flow-controlled ventilation&#59; PBW&#44; predicted body weight&#59; PEEP&#44; positive end-expiratory pressure&#59; PaCO<span class="elsevierStyleInf">2</span>&#44; arterial partial pressure of carbon dioxide&#59; PaO<span class="elsevierStyleInf">2</span>&#47;FiO<span class="elsevierStyleInf">2</span>&#44; arterial partial pressure of oxygen to fraction of inspired oxygen ratio&#59; Crs&#44; compliance of the respiratory system&#46;</p><p id="spara004" class="elsevierStyleSimplePara elsevierViewall">All measurement were obtained in CMV prior to switching to FCV &#40;CMV1&#41;&#44; after 4 hours of FCV&#44; and then again after 4 hours of CMV &#40;CMV2&#41;&#46; During CMV&#44; plateau pressure &#40;Pplat&#41; and total PEEP were measured at the points of zero flow during an end-inspiratory and end-expiratory pause&#44; respectively&#44; while during FCV Pplat is displayed every 10 cycles after an automatic pressure drop in the pressure curve&#46; Driving pressure was computed as the difference between Pplat and total PEEP&#44; during CMV&#44; and the difference between peak pressure &#40;Ppeak&#41; and end-expiratory pressure&#44; during FCV&#46; Crs was calculated as the ratio between tidal volume and driving pressure&#46; Inspiratory flow during CMV was calculated as the ratio between tidal volumes and inspiratory time&#44; while inspiratory flow during FCV is set on the ventilator&#46;</p><p id="spara005" class="elsevierStyleSimplePara elsevierViewall">Ventilatory ratio was calculated as the ratio between the product of measured minute ventilation &#40;mL&#47;min&#41; and measured PaCO2 and the product between predicted minute ventilation &#40;PBW&#42;100 mL&#47;min&#41; and expected PaCO2 &#40;37&#46;5 mmHg&#41; &#40;10&#46;1164&#47;rccm&#46;201804-0692OC&#41;&#46; Mechanical power was calculated as follows&#58; 0&#46;098&#42;respiratory rate&#42;tidal volume&#42;&#91;Ppeak-1&#47;2&#42;&#40;Pplat-PEEP&#41;&#93; &#40;10&#46;1186&#47;s13054-020-03116-w&#41;&#46;</p><p id="spara006" class="elsevierStyleSimplePara elsevierViewall">Variables are reported as median &#40;interquartile range&#41; and were compared using the Friedman two-way analysis of variance&#44; followed by pairwise comparison with Wilcoxon signed-rank test and <span class="elsevierStyleItalic">post-hoc</span> Bonferroni correction&#44; when indicated&#46; The Kendall&#39;s W value is the effect size estimate for Friedman test and ranges from 0&#46;1-0&#46;3 &#40;small effect&#41; to &#62;0&#46;5 &#40;large effect&#41;&#46;</p>"
          "tablatextoimagen" => array:1 [
            0 => array:1 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0001"></a><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Variable&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><a name="en0002"></a><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">CMV1&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><a name="en0003"></a><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">FCV&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><a name="en0004"></a><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">CMV2&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><a name="en0005"></a><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">p-value<a class="elsevierStyleCrossRef" href="#tb1fn1"><span class="elsevierStyleSup">a</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><a name="en0006"></a><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Kendall&#39;s W&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0007"></a><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_colgroup " colspan="6" align="left" valign="top">Ventilatory settings</td></tr><tr title="table-row"><a name="en0008"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Respiratory rate &#40;breaths&#47;min&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0009"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">26 &#40;24-28&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0010"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">17 &#40;16-18&#41;<a class="elsevierStyleCrossRef" href="#tb1fn2"><span class="elsevierStyleSup">b</span></a><a class="elsevierStyleCrossRef" href="#tb1fn3"><span class="elsevierStyleSup">c</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0011"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">25 &#40;22-26&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0012"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">&#60;0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0013"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;930&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0014"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Tidal volume &#40;mL&#47;kg PBW&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0015"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">6&#46;9 &#40;6&#46;8-7&#46;3&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0016"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">6&#46;8 &#40;6&#46;5-7&#46;3&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0017"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">6&#46;8 &#40;6&#46;5-7&#46;2&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0018"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;968&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0019"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;003&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0020"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Minute ventilation &#40;L&#47;min&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0021"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">11&#46;8 &#40;10&#46;2-12&#46;8&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0022"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">7&#46;7 &#40;7&#46;1-8&#46;2&#41;<a class="elsevierStyleCrossRef" href="#tb1fn4"><span class="elsevierStyleSup">d</span></a><a class="elsevierStyleCrossRef" href="#tb1fn5"><span class="elsevierStyleSup">e</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0023"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">10&#46;8 &#40;9&#46;6-12&#46;1&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0024"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">&#60;0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0025"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;830&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0026"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Peak pressure &#40;cmH<span class="elsevierStyleInf">2</span>O&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0027"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">27 &#40;25-28&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0028"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">23 &#40;20-25&#41;<a class="elsevierStyleCrossRef" href="#tb1fn2"><span class="elsevierStyleSup">b</span></a><a class="elsevierStyleCrossRef" href="#tb1fn3"><span class="elsevierStyleSup">c</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0029"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">26 &#40;25-28&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0030"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">&#60;0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0031"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;810&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0032"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Plateau pressure &#40;cmH<span class="elsevierStyleInf">2</span>O&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0033"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">21 &#40;20-23&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0034"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">21 &#40;19-23&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0035"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">22 &#40;21-23&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0036"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;015&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0037"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;420&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0038"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">PEEP &#40;cmH<span class="elsevierStyleInf">2</span>O&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0039"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">9 &#40;8-10&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0040"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">9 &#40;7-10&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0041"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">9 &#40;8-10&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0042"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;772&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0043"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;030&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0044"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Inspiratory flow &#40;L&#47;min&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0045"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">26 &#40;23-26&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0046"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">15 &#40;14-15&#41;<a class="elsevierStyleCrossRef" href="#tb1fn4"><span class="elsevierStyleSup">d</span></a><a class="elsevierStyleCrossRef" href="#tb1fn5"><span class="elsevierStyleSup">e</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0047"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">22 &#40;22-26&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0048"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">&#60;0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0049"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;800&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0050"></a><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_colgroup " colspan="6" align="left" valign="top">Gas exchanges</td></tr><tr title="table-row"><a name="en0051"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">pH&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0052"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">7&#46;37 &#40;7&#46;30-7&#46;42&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0053"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">7&#46;39 &#40;7&#46;36-7&#46;42&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0054"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">7&#46;34 &#40;7&#46;27-7&#46;42&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0055"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;280&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0056"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;130&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0057"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">PaCO<span class="elsevierStyleInf">2</span> &#40;mmHg&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0058"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">49 &#40;43-51&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0059"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">45 &#40;42-48&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0060"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">51 &#40;45-56&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0061"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;275&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0062"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;130&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0063"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">PaO<span class="elsevierStyleInf">2</span>&#47;FiO<span class="elsevierStyleInf">2</span> &#40;mmHg&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0064"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">128 &#40;116-134&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0065"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">136 &#40;115-147&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0066"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">134 &#40;106-152&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0067"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;275&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0068"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;150&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0069"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Ventilatory ratio&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0070"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">2&#46;22 &#40;1&#46;90-2&#46;56&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0071"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">1&#46;40 &#40;1&#46;28-1&#46;44&#41;<a class="elsevierStyleCrossRef" href="#tb1fn4"><span class="elsevierStyleSup">d</span></a><a class="elsevierStyleCrossRef" href="#tb1fn5"><span class="elsevierStyleSup">e</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0072"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">2&#46;20 &#40;1&#46;79-2&#46;57&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0073"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">&#60;0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0074"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;770&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0075"></a><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_colgroup " colspan="6" align="left" valign="top">Mechanical properties of the respiratory system</td></tr><tr title="table-row"><a name="en0076"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Crs &#40;mL&#47;cmH<span class="elsevierStyleInf">2</span>O&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0077"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">36 &#40;34-38&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0078"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">35 &#40;34-40&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0079"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">36 &#40;33-39&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0080"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;704&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0081"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;040&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0082"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Driving pressure &#40;cmH<span class="elsevierStyleInf">2</span>O&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0083"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">13 &#40;12-13&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0084"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">12 &#40;11-13&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0085"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">13 &#40;12-14&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0086"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;331&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0087"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;110&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><a name="en0088"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">Mechanical power &#40;J&#47;min&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0089"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">22&#46;7 &#40;20&#46;3-25&#46;6&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0090"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">10&#46;8 &#40;9&#46;9-13&#46;4&#41;<a class="elsevierStyleCrossRef" href="#tb1fn4"><span class="elsevierStyleSup">d</span></a><a class="elsevierStyleCrossRef" href="#tb1fn5"><span class="elsevierStyleSup">e</span></a>&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0091"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">20&#46;1 &#40;19&#46;0-24&#46;0&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0092"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">&#60;0&#46;001&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><a name="en0093"></a><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="" valign="top">0&#46;760&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
            ]
          ]
          "notaPie" => array:5 [
            0 => array:3 [
              "identificador" => "tb1fn1"
              "etiqueta" => "a"
              "nota" => "<p class="elsevierStyleNotepara" id="notep0007">p-value from the Friedman two-way analysis of variance&#46;</p>"
            ]
            1 => array:3 [
              "identificador" => "tb1fn2"
              "etiqueta" => "b"
              "nota" => "<p class="elsevierStyleNotepara" id="notep0008">p&#60;0&#46;05 between FCV and CMV1 after <span class="elsevierStyleItalic">post-hoc</span> Bonferroni correction&#46;</p>"
            ]
            2 => array:3 [
              "identificador" => "tb1fn3"
              "etiqueta" => "c"
              "nota" => "<p class="elsevierStyleNotepara" id="notep0009">p&#60;0&#46;05 between FCV and CMV2 after <span class="elsevierStyleItalic">post-hoc</span> Bonferroni correction&#46;</p>"
            ]
            3 => array:3 [
              "identificador" => "tb1fn4"
              "etiqueta" => "d"
              "nota" => "<p class="elsevierStyleNotepara" id="notep0010">p&#60;0&#46;01 between FCV and CMV1 after <span class="elsevierStyleItalic">post-hoc</span> Bonferroni correction&#46;</p>"
            ]
            4 => array:3 [
              "identificador" => "tb1fn5"
              "etiqueta" => "e"
              "nota" => "<p class="elsevierStyleNotepara" id="notep0011">p&#60;0&#46;01 between FCV and CMV2 after <span class="elsevierStyleItalic">post-hoc</span> Bonferroni correction&#46;</p>"
            ]
          ]
        ]
        "descripcion" => array:1 [
          "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Ventilatory settings&#44; mechanical properties of the respiratory system&#44; and outcome variables</p>"
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "cebibsec1"
          "bibliografiaReferencia" => array:13 [
            0 => array:3 [
              "identificador" => "bib0001"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Ventilator-induced lung injury"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "AS Slutsky"
                            1 => "VM&#46; Ranieri"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1056/NEJMra1208707"
                      "Revista" => array:6 [
                        "tituloSerie" => "N Engl J Med"
                        "fecha" => "2013"
                        "volumen" => "369"
                        "paginaInicial" => "2126"
                        "paginaFinal" => "2136"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24283226"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0002"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "An official American Thoracic Society&#47;European Society of Intensive Care Medicine&#47;Society of Critical Care Medicine Clinical practice guideline&#58; mechanical ventilation in adult patients with acute respiratory distress syndrome"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "E Fan"
                            1 => "L Del Sorbo"
                            2 => "EC Goligher"
                            3 => "CL Hodgson"
                            4 => "L Munshi"
                            5 => "AJ Walkey"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1164/rccm.201703-0548ST"
                      "Revista" => array:5 [
                        "tituloSerie" => "Am J Respir Crit Care Med"
                        "fecha" => "2017"
                        "volumen" => "195"
                        "paginaInicial" => "1253"
                        "paginaFinal" => "1263"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0003"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Static and dynamic contributors to ventilator-induced lung injury in clinical practice&#46; pressure&#44; energy&#44; and power"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "JJ Marini"
                            1 => "PRM Rocco"
                            2 => "L&#46; Gattinoni"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1164/rccm.201908-1545CI"
                      "Revista" => array:6 [
                        "tituloSerie" => "Am J Respir Crit Care Med"
                        "fecha" => "2020"
                        "volumen" => "201"
                        "paginaInicial" => "767"
                        "paginaFinal" => "774"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31665612"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0004"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Effects of inspiratory flow on lung stress&#44; pendelluft&#44; and ventilation heterogeneity in ARDS&#58; a physiological study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "A Santini"
                            1 => "T Mauri"
                            2 => "F Dalla Corte"
                            3 => "E Spinelli"
                            4 => "A Pesenti"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1186/s13054-019-2641-0"
                      "Revista" => array:5 [
                        "tituloSerie" => "Crit Care"
                        "fecha" => "2019"
                        "volumen" => "23"
                        "paginaInicial" => "369"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31752952"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Machine learning-based analysis of alveolar and vascular injury in SARS-CoV-2 acute respiratory failure"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "F Calabrese"
                            1 => "F Pezzuto"
                            2 => "F Fortarezza"
                            3 => "A Boscolo"
                            4 => "F Lunardi"
                            5 => "C Giraudo"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1002/path. 5653"
                      "Revista" => array:6 [
                        "tituloSerie" => "J Pathol"
                        "fecha" => "2021"
                        "volumen" => "254"
                        "paginaInicial" => "173"
                        "paginaFinal" => "184"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33626204"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0006"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Flow-controlled ventilation &#40;FCV&#41; improves regional ventilation in obese patients - a randomized controlled crossover trial"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:6 [
                            0 => "J Weber"
                            1 => "L Straka"
                            2 => "S Borgmann"
                            3 => "J Schmidt"
                            4 => "S Wirth"
                            5 => "S&#46; Schumann"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1186/s12871-020-0944-y"
                      "Revista" => array:5 [
                        "tituloSerie" => "BMC Anesthesiol"
                        "fecha" => "2020"
                        "volumen" => "20"
                        "paginaInicial" => "24"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31992213"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0007"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows - Flow-controlled ventilation &#40;FCV&#41;"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "T Barnes"
                            1 => "D van Asseldonk"
                            2 => "D Enk"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.mehy.2018.09.038"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med&#46; Hypotheses"
                        "fecha" => "2018"
                        "volumen" => "121"
                        "paginaInicial" => "167"
                        "paginaFinal" => "176"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30396474"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0008"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device&#58; A controlled interventional trial in healthy pigs"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "J Schmidt"
                            1 => "C Wenzel"
                            2 => "M Mahn"
                            3 => "S Spassov"
                            4 => "H Cristina Schmitz"
                            5 => "S Borgmann"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/EJA.0000000000000819"
                      "Revista" => array:6 [
                        "tituloSerie" => "Eur J Anaesthesiol"
                        "fecha" => "2018"
                        "volumen" => "35"
                        "paginaInicial" => "736"
                        "paginaFinal" => "744"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29734208"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib0009"
              "etiqueta" => "9"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Individualized flow-controlled ventilation compared to best clinical practice pressure-controlled ventilation&#58; a prospective randomized porcine study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "P Spraider"
                            1 => "J Martini"
                            2 => "J Abram"
                            3 => "G Putzer"
                            4 => "B Glodny"
                            5 => "T Hell"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1186/s13054-020-03325-3"
                      "Revista" => array:5 [
                        "tituloSerie" => "Crit Care"
                        "fecha" => "2020"
                        "volumen" => "24"
                        "paginaInicial" => "662"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33239039"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "10"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Flow-controlled ventilation improves gas exchange in lung-healthy patients - a randomized interventional cross-over study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "J Weber"
                            1 => "J Schmidt"
                            2 => "L Straka"
                            3 => "S Wirth"
                            4 => "S&#46; Schumann"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1111/aas.13526"
                      "Revista" => array:6 [
                        "tituloSerie" => "Acta Anaesthesiol Scand"
                        "fecha" => "2020"
                        "volumen" => "64"
                        "paginaInicial" => "481"
                        "paginaFinal" => "488"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31828755"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            10 => array:3 [
              "identificador" => "bib0011"
              "etiqueta" => "11"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Comparative effects of flow vs&#46; volume-controlled one-lung ventilation on gas exchange and respiratory system mechanics in pigs"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "J Wittenstein"
                            1 => "M Scharffenberg"
                            2 => "X Ran"
                            3 => "D Keller"
                            4 => "P Michler"
                            5 => "S Tauer"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1186/s40635-020-00308-0"
                      "Revista" => array:5 [
                        "tituloSerie" => "ICMx"
                        "fecha" => "2020"
                        "volumen" => "8"
                        "paginaInicial" => "24"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33336305"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            11 => array:3 [
              "identificador" => "bib0012"
              "etiqueta" => "12"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Flow-controlled ventilation attenuates lung injury in a porcine model of acute respiratory distress syndrome&#58; a preclinical randomized controlled study"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "J Schmidt"
                            1 => "C Wenzel"
                            2 => "S Spassov"
                            3 => "S Borgmann"
                            4 => "Z Lin"
                            5 => "J Wollborn"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/CCM.0000000000004209"
                      "Revista" => array:5 [
                        "tituloSerie" => "Crit Care Med"
                        "fecha" => "2020"
                        "volumen" => "48"
                        "paginaInicial" => "e241"
                        "paginaFinal" => "e248"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            12 => array:3 [
              "identificador" => "bib0013"
              "etiqueta" => "13"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "T Barnes"
                            1 => "D Enk"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.tacc.2018.09.003"
                      "Revista" => array:5 [
                        "tituloSerie" => "Trends Anaesth&#46; Crit&#46; Care"
                        "fecha" => "2019"
                        "volumen" => "24"
                        "paginaInicial" => "5"
                        "paginaFinal" => "12"
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
    "agradecimientos" => array:1 [
      0 => array:2 [
        "identificador" => "xack654425"
        "vista" => "all"
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/25310437/0000002900000002/v1_202303021319/S253104372200126X/v1_202303021319/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "72880"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Letters to the Editor"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/25310437/0000002900000002/v1_202303021319/S253104372200126X/v1_202303021319/en/main.pdf?idApp=UINPBA00004E&text.app=https://journalpulmonology.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S253104372200126X?idApp=UINPBA00004E"
]
Share
Journal Information
Vol. 29. Issue 2.
Pages 154-156 (March - April 2023)
Share
Share
Download PDF
More article options
Vol. 29. Issue 2.
Pages 154-156 (March - April 2023)
Letter to the Editor
Open Access
Flow-controlled ventilation may reduce mechanical power and increase ventilatory efficiency in severe coronavirus disease-19 acute respiratory distress syndrome
Visits
3933
A. Grassettoa,#,
Corresponding author
alberto.grassetto@aulss2.veneto.it

Corresponding author at: Anesthesia and Intensive Care, Vittorio Veneto Hospital, Via C. Forlanini 71, 31029, Vittorio Veneto, Italy.
, T. Pettenuzzob,#, F. Badiia, R. Carlona, N. Sellab, P. Navalesib,c
a Anesthesia and Intensive Care, Vittorio Veneto Hospital, Via C. Forlanini 71, 31029 Vittorio Veneto, Italy
b Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Via V. Gallucci 13, 35121 Padua, Italy
c Department of Medicine, University of Padua, Via Giustiniani 2, 35128 Padua, Italy
This item has received

Under a Creative Commons license
Article information
Full Text
Bibliography
Download PDF
Statistics
Full Text
To the Editor,

The prevention of ventilator-induced lung injury (VILI) is the mainstay of the management of mechanical ventilation in patients with acute respiratory distress syndrome (ARDS).1 Official guidelines have focused on tidal volume, plateau pressure (Pplat), positive end-expiratory pressure (PEEP), and driving pressure (DP), i.e., the difference between Pplat and PEEP, to identify lung-protective ventilation strategies.2 However, even values of tidal volumes and Pplat that are normally considered safe may result in injurious ventilation.3

Mechanical power (MP) represents the total energy transferred from the mechanical ventilator to the lungs during inflation and includes dynamic variables such as inspiratory flow rate and breathing frequency.3 Some studies suggest that MP may predict mortality in ARDS patients3 and that higher inspiratory flow rates increase the risk of VILI in patients with mild to moderate ARDS.4

The lungs of patients with coronavirus disease (COVID)-19 related ARDS are characterized by parenchymal heterogeneity, leading to regional differences in pulmonary mechanical properties.5 Consequently, higher velocities of lung inflation may drive a greater fraction of tidal volume to alveolar units with shorter time constant and unevenly amplify lung stress in some regions.3 Therefore, reducing flow rates might be beneficial.

Flow-controlled ventilation (FCV) (Evone®, Ventinova Medical, Eindhoven, The Netherlands) is a ventilatory mode where both inspiratory and expiratory flow rates are maintained constant and < 20 L/min throughout the respiratory cycle by regulating tracheal pressure, as measured through a dedicated lumen opening at the distal end of the endotracheal tube.6 During FCV, the inspiratory flow rate, inspiratory to expiratory ratio, peak inspiratory pressure (Ppeak), end-expiratory pressure (EEP), and the inspiratory concentration of oxygen are pre-set, whereas tidal volume and respiratory rate vary depending on ventilator settings and the patient's respiratory mechanics.7 Some studies observed improved lung recruitment, more homogeneous lung aeration,6,8,9 better gas exchange,8-12 and attenuated experimental lung injury with FCV,12, compared to volume-targeted mechanical ventilation (conventional mechanical ventilation, CMV). We hypothesize that FCV would reduce MP and ventilatory ratio (VR) in COVID-19 patients developing refractory hypoxemia despite optimization of CMV and prone positioning.

This pilot study was performed in 10 sedated and paralyzed COVID-19 ARDS patients admitted to the intensive care unit with arterial partial pressure of oxygen to inspired oxygen fraction ratio (PaO2/FiO2) < 150 mmHg during CMV while in prone position for at least 12 consecutive hours.2 Inspiratory and expiratory flow rates were initially set at 15 L/min with inspiratory to expiratory ratio 1:1, while EEP was equal to PEEP and Ppeak to Pplat during CMV, thereby maintaining approximately the same DP and consequently similar tidal volumes. All measurements were obtained in CMV prior to switching to FCV (CMV1), after 4 hours of FCV, and then again after 4 hours of CMV (CMV2). All variables are reported as median (interquartile range) and compared using the Friedman test, followed by pairwise comparison with Wilcoxon signed-rank test and post-hoc Bonferroni correction. All statistical tests were two-tailed and statistical significance was defined as p<0.05.

Patient age was 59 (55-57) years and the predicted body weight 65 (59-68) kg. Nine (90%) patients survived the hospital stay. As reported in Table 1, during FCV inspiratory flow rate, respiratory rate, and minute ventilation were all decreased, compared to both CMV1 and CMV2. During FCV the MP was 10.8 (9.9-13.4) J/min, as opposed to CMV1 [22.7 (20.3-25.6) J/min (p=0.006)] and CMV2 [20.1 (19.0-24.0) J/min (p=0.006)], and VR was 1.40 (1.28-1.44), as compared with CMV1 [2.22 (1.90-2.56) (p=0.006)] and CMV2 [2.20 (1.79-2.57) (p=0.006)]. Arterial partial pressure of carbon dioxide, pH, and PaO2/FiO2 were not significantly different among the three conditions.

Table 1.

Ventilatory settings, mechanical properties of the respiratory system, and outcome variables

Variable  CMV1  FCV  CMV2  p-valuea  Kendall's W 
Ventilatory settings
Respiratory rate (breaths/min)  26 (24-28)  17 (16-18)bc  25 (22-26)  <0.001  0.930 
Tidal volume (mL/kg PBW)  6.9 (6.8-7.3)  6.8 (6.5-7.3)  6.8 (6.5-7.2)  0.968  0.003 
Minute ventilation (L/min)  11.8 (10.2-12.8)  7.7 (7.1-8.2)de  10.8 (9.6-12.1)  <0.001  0.830 
Peak pressure (cmH2O)  27 (25-28)  23 (20-25)bc  26 (25-28)  <0.001  0.810 
Plateau pressure (cmH2O)  21 (20-23)  21 (19-23)  22 (21-23)  0.015  0.420 
PEEP (cmH2O)  9 (8-10)  9 (7-10)  9 (8-10)  0.772  0.030 
Inspiratory flow (L/min)  26 (23-26)  15 (14-15)de  22 (22-26)  <0.001  0.800 
Gas exchanges
pH  7.37 (7.30-7.42)  7.39 (7.36-7.42)  7.34 (7.27-7.42)  0.280  0.130 
PaCO2 (mmHg)  49 (43-51)  45 (42-48)  51 (45-56)  0.275  0.130 
PaO2/FiO2 (mmHg)  128 (116-134)  136 (115-147)  134 (106-152)  0.275  0.150 
Ventilatory ratio  2.22 (1.90-2.56)  1.40 (1.28-1.44)de  2.20 (1.79-2.57)  <0.001  0.770 
Mechanical properties of the respiratory system
Crs (mL/cmH2O)  36 (34-38)  35 (34-40)  36 (33-39)  0.704  0.040 
Driving pressure (cmH2O)  13 (12-13)  12 (11-13)  13 (12-14)  0.331  0.110 
Mechanical power (J/min)  22.7 (20.3-25.6)  10.8 (9.9-13.4)de  20.1 (19.0-24.0)  <0.001  0.760 

Abbreviations: CMV, conventional mechanical ventilation; FCV, flow-controlled ventilation; PBW, predicted body weight; PEEP, positive end-expiratory pressure; PaCO2, arterial partial pressure of carbon dioxide; PaO2/FiO2, arterial partial pressure of oxygen to fraction of inspired oxygen ratio; Crs, compliance of the respiratory system.

All measurement were obtained in CMV prior to switching to FCV (CMV1), after 4 hours of FCV, and then again after 4 hours of CMV (CMV2). During CMV, plateau pressure (Pplat) and total PEEP were measured at the points of zero flow during an end-inspiratory and end-expiratory pause, respectively, while during FCV Pplat is displayed every 10 cycles after an automatic pressure drop in the pressure curve. Driving pressure was computed as the difference between Pplat and total PEEP, during CMV, and the difference between peak pressure (Ppeak) and end-expiratory pressure, during FCV. Crs was calculated as the ratio between tidal volume and driving pressure. Inspiratory flow during CMV was calculated as the ratio between tidal volumes and inspiratory time, while inspiratory flow during FCV is set on the ventilator.

Ventilatory ratio was calculated as the ratio between the product of measured minute ventilation (mL/min) and measured PaCO2 and the product between predicted minute ventilation (PBW*100 mL/min) and expected PaCO2 (37.5 mmHg) (10.1164/rccm.201804-0692OC). Mechanical power was calculated as follows: 0.098*respiratory rate*tidal volume*[Ppeak-1/2*(Pplat-PEEP)] (10.1186/s13054-020-03116-w).

Variables are reported as median (interquartile range) and were compared using the Friedman two-way analysis of variance, followed by pairwise comparison with Wilcoxon signed-rank test and post-hoc Bonferroni correction, when indicated. The Kendall's W value is the effect size estimate for Friedman test and ranges from 0.1-0.3 (small effect) to >0.5 (large effect).

a

p-value from the Friedman two-way analysis of variance.

b

p<0.05 between FCV and CMV1 after post-hoc Bonferroni correction.

c

p<0.05 between FCV and CMV2 after post-hoc Bonferroni correction.

d

p<0.01 between FCV and CMV1 after post-hoc Bonferroni correction.

e

p<0.01 between FCV and CMV2 after post-hoc Bonferroni correction.

Our study evaluating a series of 10 consecutive patients affected by COVID-19 with refractory hypoxemia, despite prone positioning while receiving CMV, suggests that FCV may be associated with some advantages. First, the application of FCV resulted in decreased MP, as a consequence of lower inspiratory flow rates and breathing frequencies, potentially reducing the dissipated energy.7,12,13 Indeed, FCV was shown to reduce MP11 and attenuate VILI through this mechanism in porcine models.12 Second, our results are in keeping with preclinical8,9,12 and clinical studies,6, demonstrating higher ventilatory efficiency, probably related to improved intrapulmonary distribution of ventilation with FCV. Third, although we did not observe any significant improvement in gas exchange with FCV, previous studies reported better oxygenation and carbon dioxide elimination with this mode.8-12, Therefore, our study extends to the critical illness setting the current evidence, mainly limited to preclinical studies and small clinical studies performed in the operating room, suggesting that FCV might reduce VILI, while maintaining adequate gas exchanges.

Our study has important limitations. First, the small sample size makes our findings exploratory and hypothesis-generating. Larger prospective studies are necessary to confirm these results and support clinical studies ascertaining the impact of FCV on clinical outcomes. Second, the external validity and the generalizability of our findings to patients with acute respiratory failure of different etiology need to be assessed. Furthermore, we cannot rule out that different dead space of the ventilator apparatus may have contributed to the improvement of VR with FCV. However, this is unlikely because we always used an active humidifier before the Y-piece of the respiratory circuit during CMV.

In conclusion, FCV reduced MP and VR in a small cohort of severely hypoxemic COVID-19 patients receiving CMV and prone positioning.

Authors' contributions

Conception and design of the study: AG, TP. Acquisition of the data: AG, FB, RC. Analysis of the data: AG, TP, NS. Interpretation of the data: all authors. Drafting of the manuscript: AG, TP, NS, PN. Critical revision of the manuscript for important intellectual content: All authors. Final approval of the version to be submitted: all authors.

References
[1]
AS Slutsky, VM. Ranieri.
Ventilator-induced lung injury.
N Engl J Med, 369 (2013), pp. 2126-2136
[2]
E Fan, L Del Sorbo, EC Goligher, CL Hodgson, L Munshi, AJ Walkey, et al.
An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome.
Am J Respir Crit Care Med, 195 (2017), pp. 1253-1263
[3]
JJ Marini, PRM Rocco, L. Gattinoni.
Static and dynamic contributors to ventilator-induced lung injury in clinical practice. pressure, energy, and power.
Am J Respir Crit Care Med, 201 (2020), pp. 767-774
[4]
A Santini, T Mauri, F Dalla Corte, E Spinelli, A Pesenti.
Effects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: a physiological study.
[5]
F Calabrese, F Pezzuto, F Fortarezza, A Boscolo, F Lunardi, C Giraudo, et al.
Machine learning-based analysis of alveolar and vascular injury in SARS-CoV-2 acute respiratory failure.
J Pathol, 254 (2021), pp. 173-184
[6]
J Weber, L Straka, S Borgmann, J Schmidt, S Wirth, S. Schumann.
Flow-controlled ventilation (FCV) improves regional ventilation in obese patients - a randomized controlled crossover trial.
BMC Anesthesiol, 20 (2020), pp. 24
[7]
T Barnes, D van Asseldonk, D Enk.
Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows - Flow-controlled ventilation (FCV).
Med. Hypotheses, 121 (2018), pp. 167-176
[8]
J Schmidt, C Wenzel, M Mahn, S Spassov, H Cristina Schmitz, S Borgmann, et al.
Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: A controlled interventional trial in healthy pigs.
Eur J Anaesthesiol, 35 (2018), pp. 736-744
[9]
P Spraider, J Martini, J Abram, G Putzer, B Glodny, T Hell, et al.
Individualized flow-controlled ventilation compared to best clinical practice pressure-controlled ventilation: a prospective randomized porcine study.
[10]
J Weber, J Schmidt, L Straka, S Wirth, S. Schumann.
Flow-controlled ventilation improves gas exchange in lung-healthy patients - a randomized interventional cross-over study.
Acta Anaesthesiol Scand, 64 (2020), pp. 481-488
[11]
J Wittenstein, M Scharffenberg, X Ran, D Keller, P Michler, S Tauer, et al.
Comparative effects of flow vs. volume-controlled one-lung ventilation on gas exchange and respiratory system mechanics in pigs.
[12]
J Schmidt, C Wenzel, S Spassov, S Borgmann, Z Lin, J Wollborn, et al.
Flow-controlled ventilation attenuates lung injury in a porcine model of acute respiratory distress syndrome: a preclinical randomized controlled study.
Crit Care Med, 48 (2020), pp. e241-e248
[13]
T Barnes, D Enk.
Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration.
Trends Anaesth. Crit. Care, 24 (2019), pp. 5-12

Equal contribution.

Copyright © 2022. Sociedade Portuguesa de Pneumologia
Download PDF
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?