Journal Information
Vol. 14. Issue 5.
Pages 647-675 (September - October 2008)
Share
Share
Download PDF
More article options
Vol. 14. Issue 5.
Pages 647-675 (September - October 2008)
Full text access
The role of infection in asthma
Infecção na modulaçâo da asma
Visits
1059
J. Pinto Mendes
This item has received
Article information
Abstract

This paper reviews the impact of infections on the onset and clinical course of bronchial asthma. A just emphasis is given to the role viral infections, particularly rhinovirus infections, play in exacerbations, and that played by respiratory syncytial virus, suspected of triggering the asthmatic syndrome. The mechanisms of the immune response to virus attacks are explained, highlighting the asthmatic and allergic patient's weakened response, particularly in the perinatal period. Further stressed is a potentiating effect of viral aggression on the allergic response. The hygiene hypothesis and its lack of scientific consistency is detailed, at least as far as the role it seeks to confer on an unproven antagonism of the Th1 and Th2 lymphocyte responses. The current importance of research not into bacteria, but into bacterial products, including endotoxins, on the modulation of asthma and allergy is noted. Studies which, along these lines, show an environmental impact on genetic secretion in the phenotype are underlined. Also discussed in passing are several mechanisms which go towards explaining neutrophilic asthma – for many a contradiction, given eosinophilia's stranglehold on asthmatic inflammation.

Key-words:
Asthma and infection
asthma and virus
endotoxins
Resumo

Faz-se uma revisão da influência das infecções no aparecimento e na clínica da asma brônquica. Dá-se o relevo que merece à intervenção virusal, sobretudo ao rinovírus, pela sua influência nas exacerbações, e ao vírus sincicial respiratório, sobre o qual recai a suspeita de poder ser causa determinante no aparecimento da síndroma asmática. Tentam-se esclarecer os mecanismos da resposta imune à agressão virusal em função das debilidades da resposta do asmático e do atópico, sobretudo no período perinatal, salientando-se, ainda, um efeito de potenciação da agressão virusal sobre a resposta atópica. Aborda-se a hipótese higiénica e a sua falta de consistência científica, pelo menos no papel que pretende atribuir a um não demonstrado antagonismo das respostas linfocitárias Th1 e Th2, apontando-se a importância actual da investigação, não das bactérias mas dos produtos bacterianos, como as endotoxinas, na modulação da asma e da atopia, dando-se relevo aos estudos que, a partir deste modelo, demonstram uma influência do ambiente na secreção génica e, consequentemente, no fenótipo. Invocam-se, nas entrelinhas, vários mecanismos que podem explicar a asma neutrofílica que, para muitos, é um paradoxo perante o consagrado domínio do eosinófilo na inflamação asmática.

Palavras-chave:
Asma e infecção
asma e vírus
endotoxinas
Full text is only aviable in PDF
Bibliography/Bibliografia
[1.]
A. Pelaia, R. Vatrella, L. Galleli, et al.
Respiratory infections and asthma.
Respir Med, 100 (2006), pp. 775-784
[2.]
R.F. Lemanske.
Viral infections and asthma inception.
J Allergy Clin Immunol, 114 (2004), pp. 1023-1026
[3.]
S.l. Johnston, P.K. Pattermore, G. Sanderson, et al.
Community study of role of viral infections in exacerbations of asthma in 9–11 years old children.
BMJ, (1995), pp. 1225-1229
[4.]
C.C. Copenhauer, G.E. Gern, Z. Li, et al.
Cytokine response patterns, exposure to viruses and respiratory infection in the first year of life.
Am J Respir Crit Care Med, 170 (2004), pp. 175-180
[5.]
K.G. Nicholson, J. Kent, D.C. Ireland.
Respiratory virus and exacerbations of asthma in adults.
BMJ, 307 (1993), pp. 982-986
[6.]
S.L. Friedlander, W.W. Busse.
The role of rhinovirus in asthma exacerbations.
J Allergy Clin Immunol, 116 (2005), pp. 267-273
[7.]
D.W. Empey, L.A. Laitinen, L. Jacobs, et al.
Mechanics of bronchial hyperreactivity in normal subjects after upper respiratory tract infection.
Am Rev Respir Dis, 113 (1976), pp. 131-139
[8.]
G.M. Stokes, A.D. Milner, I.G.C. Hodges, R.C. Grobbins.
Lung function abnormalities after acute bronchiolitis.
J Pediatr, 98 (1981), pp. 871-874
[9.]
C.B. Haal, W.J. Halol, C.L. Gala, et al.
Long-term prospective study of children after respiratory syncytial vírus infection.
J Pediatr, 105 (1984), pp. 358-364
[10.]
J.G. Martin, S. Diddiqui, M. Hassan.
Immune responses to viral infections: relevance for asthma.
Ped Respir Rev, 75 (2006), pp. S125-S127
[11.]
B.G. Van den Hoogen, J.C. De Jong, J. Groen, et al.
A newly discovered human pneumovirus isolated from young children with respiratory tract disease.
Nat Med, 7 (2001), pp. 719-724
[12.]
L. Van der Hoek, K. Pyrc, M.F. Jerbink, et al.
Identification of a new human coronavirus.
Nat Med, 10 (2004), pp. 368-373
[13.]
P.C. Woo, S.K. Lau, S.M. Chu, et al.
Characterization and complete genome sequence of a novel coronavirus, coronavirus HKV1, from patients with pneumonia.
[14.]
T. Allander, M.T. Tammi, M. Eriksson, et al.
Cloning of a human parvovirus by molecular screening of respiratory tract samples.
Proc Natl Acad Sci USA, 102 (2005), pp. 12891-12896
[15.]
M. Pifferi, F. Maggi, E. Andreoli, et al.
Associations between torquetenovirus load and spirometric indices in children with asthma.
J Infect Dis, 192 (2005), pp. 1141-1148
[16.]
F. Freymuth, A. Vabret, F. Galateau-Salle, et al.
Detection of respiratory syncytial virus, parainfluenza 3, adenovirus and rhinovirus sequences in respiratory tract of infants by polymerase chain reaction and hybridization.
Clin Diagn Virol, 8 (1997), pp. 31-40
[17.]
P.L. Ogra.
Respiratory syncytial virus: the virus, the disease and the immune response.
Paediatr Respir Rev, 5 (2004), pp. 223-238
[18.]
R.F. Lemanske.
Is asthma an infectious disease?.
Chest, 3 (2003), pp. S385-S390
[19.]
M. Weinberger.
Respiratory infections and asthma: current treatment strategies.
Drug Discovery Today, 9 (2004), pp. 831-837
[20.]
N. Sigurs, R. Bjamason, F. Sigurbergsson, B. Kjellman.
Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7.
Am J Respir Crit Care Med, 161 (2000), pp. 1501-1507
[21.]
F.D. Martinez.
Respiratory syncytial virus bronchiolitis and the pathogenesis of childhood asthma.
Pediatr Infect Dis J, 22 (2003), pp. 76-82
[22.]
P.G. Holt, P.D. Sly.
Interactions betweem RSV infection, asthma and atopy. Unraveling the complexities.
J Exp Med, 196 (2005), pp. 1271-1275
[23.]
M.M.H. Husel, N.H. De Klerk, T. Kebadze, et al.
Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma.
J Allergy Clin Immunol, 119 (2007), pp. 1105-1110
[24.]
L.-G. Hersoug.
A reformulation of the hygiene hypothesis: maternal infeccious diseases confer protection against asthma in the infant?.
Medical Hypothesis, 27 (2006), pp. 717-720
[25.]
A. Darkham, Y. Mok Lee, E.W. Gelfand.
Virus-induced airway dysfunction. Pathogenesis and biomechanisms.
Ped Infect Dis J, 24 (2005), pp. S159-S169
[26.]
N. Sigurs, P.M. Gustafsson, R. Bjarnason, et al.
Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13.
Am J Respir Crit Care Med, 171 (2005), pp. 137-141
[27.]
R. Stein, D. Sherrill, W. Morgan, et al.
Respiratory syncycial virus in early life and risk of wheeze and allergy by age of 13 years.
[28.]
B.S. Graham, L.A. Bunton, P.F. Wright, D.T. Karzon.
Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory virus in mice.
J Clin Invest, 88 (1991), pp. 1026-1033
[29.]
A. Dakhama, J.W. Park, C. Taube, et al.
Alteration of airway neuropeptide expression and development of airway hyperresponsiveness following syncytial virus infection.
Am J Physiol Lung Cell Mol Physiol, 228 (2005), pp. L761-L770
[30.]
V. Bitko, A. Musiyenko, O. Shulyayeva, S. Barik.
Inhibition of respiratory virus by nasally administered siRNA.
Nat Med, 11 (2005), pp. 50-55
[31.]
W. Zhang, H. Yang, X. Kong, et al.
Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene.
Nat Med, 11 (2005), pp. 56-62
[32.]
R.F. Lemanske, D.J. Jackson, R.E. Gangnon, et al.
Rhinovirus illness during infancy predict subsequent childhood wheezing.
J Allergy Clin Immunol, 116 (2005), pp. 571-577
[33.]
W.C. Tan.
Virus in asthma exacerbations.
Curr Opin Pulm Med, 11 (2005), pp. 21-26
[34.]
K. Almström, A. Pitkäranta, O. Carpen, et al.
Human rhinovirus in bronchial epithelium of infants with recurrent respiratory symptoms.
J Allergy Clin Immunol, 118 (2006), pp. 591-596
[35.]
S.T. Holgate.
Rhinovirus in the pathogenesis of asthma: the bronchial epithelium as a major disease target.
J Allergy Clin Immunol, 118 (2006), pp. 587-590
[36.]
D. Cheung, E.C. Dick, M.C. Timmers, et al.
Rhinovirus inhalation causes long-lasting excessive airway narrowing in response to methacholine in asthmatic subjects in vivo.
Am J Respir Crit Care Med, 152 (1995), pp. 1490-1496
[37.]
K. Grungerg, M.C. Timmers, E.P. De Klerk, et al.
Experimental rhinovirus 16 infection causes variable airway obstruction in subjects with atopic asthma.
Am J Respir Crit Care Med, 160 (1999), pp. 1375-1380
[38.]
M. Calvani, C. Alessandri, E. Bonci.
Fever episodes in early life and the development of atopy in children with asthma.
Eur Respir J, 20 (2002), pp. 391-396
[39.]
M. Korppi, E. Piippo-Savolainen, K. Korhonen, S. Remess.
Respiratory morbidity 20 years after SRV in infancy.
Pediatr Pulmonol, 38 (2004), pp. 155-160
[40.]
W.J. Calhoun, E.C. Dick, L.B. Schwartz, W.W. Busse.
A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects.
J Clin Invest, 94 (1994), pp. 2220-2228
[41.]
J. Schwarze, E.W. Gelfand.
Respiratory viral infections as promoters of allergic sensitization and asthma in animal models.
Eur Respir J, 19 (2002), pp. 341-349
[42.]
M.J. Makela, R. Tripp, A. Dakhama, et al.
Prior airway exposure to allergen increases vírus-induced airway hyperresponsiveness.
J Allergy Clin Immunol, 112 (2003), pp. 861-869
[43.]
M. Schaller, C.M. Hogaboam, N. Wkaks, S.L. Kunkez.
Respiratory viral infections drive chemokine expression and exacerbate the asthmatic response.
J Allergy Clin Immunol, 118 (2006), pp. 295-302
[44.]
D.A. Randolph, C.J. Carruthers, S.J. Szabo, et al.
Modulation of airway inflammation by passive transfer of allergen-specific Th1 and Th2 cells in a mouse model of asthma.
J Immunol, 162 (1999), pp. 23755-23783
[45.]
D.T. Umetsu, V. Abkari, R. Dekruyff.
Regulatory T cells control of allergic disease and asthma.
J Allergy Clin Immunol, 117 (2003), pp. 480-487
[46.]
R.M. Lee, M.R. White, K.L. Hartshorn.
Influenza A viruses upregulate neutrophil Toll-like Receptor 2 expression and function.
Scandinavian J Immunol, 63 (2006), pp. 81-89
[47.]
P. Pala, R. Bjarnason, F. Sigurbergsson, et al.
Enhanced IL-4 responses in children with a history of respiratory syncytial virus bronchiolitis in infancy.
Eur Respir J, 20 (2002), pp. 370-382
[48.]
E.H. Choi, H.J. Lee, T. Yoo, S.T. Chanock.
A common haplotype of interleukin 4 gene is associated with severe respiratory syncytial virus disease in Korean children.
J Infect Dis, 186 (2002), pp. 1207-1211
[49.]
M. Jackson, R. Scott.
Distinct patterns of cytokine induction in cultures of respiratory syncytial (RS) virus-specific humam Th cell lines following stimulation with RS virus and RS virus proteins.
[50.]
J.R. Cochran, A.M. Khan, O. Elidmir, et al.
Influence of LPS exposure on airway function and allergic responses in developing mice.
Pediatr Pulmonol, 34 (2002), pp. 267-277
[51.]
K. Takeda, S. Akira.
Toll-like receptors in innate immunity.
Int Immunol, 17 (2005), pp. 1-4
[52.]
C.A. Henson, A. Jardine, M.R. Edwards, et al.
Toll-like Receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells.
J Virol, 79 (2005), pp. 273-279
[53.]
B. Schaub, R. Lavener, E. Von Mutius.
The many faces of the hygiene hypothesis.
J Allergy Clin Immunol, 117 (2006), pp. 967-977
[54.]
P.A.B. Wark, S.L. Johnston, F. Bucchieri, et al.
Asthmatic bronchial epithelial cells have a deficient innate response to infection with rhinovirus.
J Exp Med, 210 (2005), pp. 937-947
[55.]
L.S. Van Rijt, G. Van Kessel, I. Boogaard, B.N. Lambrecht.
Respiratory viral infections and asthma pathogenesis: a critical role for dendritic cells?.
J Clin Virol, 34 (2005), pp. 161-169
[56.]
A. Mazzoni, C.A. Leifer, G.E. Mullen, et al.
Cutting edge: histamine inhibits IFN. alpha release from plasmacytoid dendritic cells.
J Immunol, 170 (2003), pp. 2269-2273
[57.]
E.I. Zuniga, D.B. Mc Gavern, J.L.E.T. Pruneda-Paz, et al.
Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection.
Nat Immunol, 5 (2004), pp. 1227-1234
[58.]
W.W. Kalina, L.J. Gershwin.
Progress in defining the role of RSV in allergy and asthma.
Clin Rev Immunol, 11 (2004), pp. 113-119
[59.]
S.T. Remes, M. Korppi.
On roots of childhood asthma: the role of respiratory infections.
Ann Med, 37 (2005), pp. 26-32
[60.]
S.L. Prescott, G. Björkstén.
Probiotic for the prevention of treatment or allergic diseases.
J Allergy Clin Immunol, 120 (2007), pp. 255-262
[61.]
D.P. Strachan.
Hay fever, hygiene and household size.
BMJ, 299 (1989), pp. 1259-1260
[62.]
J. Peat, B. Björksten.
Primary and secondary prevention of allergic asthma.
Eur Respir J, 27 (1988), pp. 28S-34S
[63.]
F.D. Martinez, P.G. Holt.
Role of microbial burden in aetiology of allergy and asthma.
Lancet, 354 (1999), pp. 112-115
[64.]
A.H. Liu, J.R. Murphy.
Hygiene hypothesis: fact or fiction?.
J Allergy Clin Immunol, 111 (2003), pp. 471-478
[65.]
Von Mutius, S. Illi, T. Hirsch, et al.
Frequency of infections in the first years of life and risk of asthma, atopy and airway hyperresponsiveness among schoolage children.
Eur Respir J, 14 (1999), pp. 4-11
[66.]
M.F. Linehan, T.L. Frank, M.L. Hazell, et al.
Is the prevalence of wheeze in children altered by neonatal BCG vaccination?.
J Allergy Clin Immunol, 119 (2007), pp. 1079-1085
[67.]
C.A. Aligne, P. Auinger, R.S. Byrd, M. Weitzman.
Risk factors for pediatric asthma. Contributions of poverty, race and urban residence.
Am J Respir Crit Care Med, 162 (2000), pp. 873-877
[68.]
M. Yazdanbarkhsh, P.G. Kremsner, R. Van Ree.
Allergy, parasites and hygiene hypothesis.
Science, 296 (2000), pp. 490-494
[69.]
K.G. Tantisara, S.T. Weiss.
Childhood infections and asthma: at the crossroad of the hygiene and Barker hypothesis.
Respir Res, 2 (2001), pp. 324-327
[70.]
S.A. Bryan, B.J. O’Connor, K.F. Chung, et al.
Effects of an antileukin-12 on eosinophils, airway hyperresponsiveness, and the late asthmatic reaction.
Lancet, 356 (2000), pp. 2148-2153
[71.]
J.F. Bach.
The effect of infections on susceptibility to autoimmune and allergic diseases.
N Engl J Med, 347 (2002), pp. 911-920
[72.]
G. Hansen, G. Berry, R. De Kruiff, D. Umetsu.
Allergen-specific Th1 cells fails to counterbalance Th2 cell induced airway hyperreactivity but cause severe airway inflammation.
J Clin Invest, 103 (1999), pp. 175-183
[73.]
M.E. Dahl, K. Dabbagh, D. Liggit, et al.
Viral-induced T helper type1 responses enhance allergic disease by effects of lung dendritic cells.
Nat Immunol, 5 (2004), pp. 337-343
[74.]
S.G. Jeon, S.-Y. Oh, H.-K. Park, et al.
Th2 and Th1 lung inflammation induced by airway allergen sensitization with low and high dose of double. stranded RNA.
J Allergy Clin Immunol, 120 (2007), pp. 803-812
[75.]
N.J. Holtzman, J.D. Morton, L.P. Shornick, et al.
Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial-viral. allergic paradigm.
Physiol Rev, 82 (2002), pp. 19-46
[76.]
R. Bachettaa, E. Gambineri, M.-G. Roncarolo.
Role of regulatory T cells and FOXP3 in human diseases.
J Allergy Clin Immunol, 120 (2007), pp. 227-235
[77.]
M. Larché.
Regulatory T cells in allergy and asthma.
Chest, 132 (2007), pp. 1607-1614
[78.]
S. Romagnani.
Coming back to a missing immune deviation as the main exploratory mechanisms for the hygiene hypothesis.
J Allergy Clin Immunol, 119 (2007), pp. 1511-1513
[79.]
G. Canonica, G. Ciprandi, G. Pesce, et al.
ICAM-1 on epithelial cells in allergic subjects: a hallmark of allergic inflammation.
Int Arch Allergy Immunol, 107 (1995), pp. 99-102
[80.]
C.B. Chmidt-Weber, M. Akdis, C.A. Akdis.
Th17 cells in the big picture of immunology.
J Allergy Clin Immunol, 120 (2007), pp. 247-254
[81.]
L.-G. Hersoug.
A reformulation of the hygiene hypothesis: maternal infectious diseases confer protection against asthma in the infant?.
Medical Hypotheses, 27 (2006), pp. 717-720
[82.]
U. Gehring, G. Bolte, M. Borte, et al.
Exposure to endotoxin decreases the risk of atopic eczema in infancy: a cohort study.
J Allergy Clin Immunol, 108 (2001), pp. 847-854
[83.]
C. Braun-Fahrlander, J. Riedler, U. Herz, The Allergy and Endotoxin Study Team, et al.
Environmental exposure to endotoxin and its relation to asthma in school-age children.
N Engl J Med, 347 (2002), pp. 869-877
[84.]
F.D. Martinez.
CD14, endotoxin and asthma risk. Actions and interactions.
Proc Am Thorac Soc, 4 (2007), pp. 221-225
[85.]
J. Riedler, W. Eder, M. Schrever, et al.
Early life exposure to farming provides protection against the development of asthma and allergy.
Lancet, 358 (2001), pp. 129-133
[86.]
E. Von Mutius.
Asthma and allergies in rural areas of Europe.
Proc Am Thoracic Soc, 4 (2007), pp. 212-216
[87.]
T. Molson, L. Bronchi, J. Hessen, et al.
Asthma and indoor environment in Nepal.
Thorax, 56 (2001), pp. 477-481
[88.]
P.K. Vedantham, P.A. Maesh, R. Vedanthan, et al.
Effect of animal contact and microbial exposures in the prevalence of atopy and asthma in urban vs rural children in India.
Ann Allergy Asthma Immunol, 96 (2006), pp. 571-578
[89.]
A.J. Reefer, R.M. Carneiro, N.J. Custis, et al.
A role for IL-10 mediated HLA. DR7 – restricted T-cell-dependent events in the development of the modified Th2 response to cat allergen.
J Immunol, 172 (2004), pp. 2763-2772
[90.]
J.A. Platts-Mills, N.J. Custis, A. Woodfock, T.A.E. Platts-Mills.
Airborne endotoxin in homes with domestic animals: implication for cat specific tolerance.
J Allergy Clin Immunol, 116 (2005), pp. 384-389
[91.]
N.K. Crellin, R.V. Garcia, O. Hadisfar, et al.
Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+ CD25+ T regulatory cells.
J Immunol, 175 (2005), pp. 8051-8059
[92.]
S. Romagnani.
The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both?.
Immunology, 112 (2004), pp. 352-363
[93.]
A. Simpson, S.L. John, F. Jury, et al.
Endotoxin exposure. CD14, and allergic disease. An association between genes and the environment.
Am J Resp Crit Care Med, 174 (2006), pp. 386-392
[94.]
G.H. Hopelman.
Gene environment interaction in allergic disease: more questions, more answers?.
J Allergy Clin Immunol, 120 (2007), pp. 1266-1268
[95.]
T. Kaisho, S. Alkira.
Toll-like receptor function and signaling.
J Allergy Clin Immunol, 117 (2006), pp. 979-987
[96.]
R.P. Lavener, T. Birchler, J. Adamski, et al.
Expression of CD14 and Toll-like receptor 2 in farmers and non-farmers children.
[97.]
M.J. Ege, R. Frei, C. Bieli, Parsifal Study, et al.
Not all farming environments protect against the development of asthma and wheeze in children.
J Allergy Clin Immunol, 119 (2007), pp. 1140-1147
[98.]
W. Eder, E. Von Mutius.
Hygiene hypothesis and endotoxin: what is the evidence?.
Curr Opin Allergy Clin Immunol, 4 (2004), pp. 113-117
[99.]
L. Portegen, L. Preller, M. Tielen, et al.
Toll-like receptor 2 as a major gene for asthma in children of European farmers.
J Allergy Clin Immunol, 113 (2004), pp. 482-488
[100.]
A.H. Liu.
Endotoxin exposure in allergy and asthma: reconciling a paradox.
J Allergy Clin Immunol, 109 (2002), pp. 379-392
[101.]
C.E. Reed, D.K. Milton.
Endotoxin-stimulated innate immunity: a contributing factor for asthma.
J Allergy Clin Immunol, 108 (2001), pp. 157-166
[102.]
J. Douwes, N. Pearce, D. Heederk.
Does environmental endotoxin exposure prevents asthma?.
Thorax, 57 (2002), pp. 86-90
[103.]
J.H. Park, D.R. Gold, D.L. Spiegelman, et al.
House dust endotoxin and wheeze in the first year of life.
Am J Respir Crit Care Med, 163 (2001), pp. 322-328
[104.]
W. Eder, W. Klimeri, L. Yu, The Allergy and Endotoxin (ALEX) Study Team.
Opposite effects of CD14/. 260 on serum IgE levels in children raised in different environments.
J Allergy Clin Immunol, 116 (2005), pp. 601-607
[105.]
J.E. Gern, C.L. Reardon, A. Hoffman, et al.
Effects of dog ownership and genotype in immune development and atopy in infancy.
J Allergy Clin Immunol, 113 (2004), pp. 307-314
[106.]
C. Bieli, W. Eder, M. Frei, et al.
A polymorphism in cd14 modified the effect of farm milk consumption on allergic disease and CD14 gene expression.
J Allergy Clin Immunol, 120 (2007), pp. 1308-1315
[107.]
S.T. Weiss.
Association studies in asthma genetics.
Am J Respir Crit Care Med, 164 (2001), pp. 2014-2015
[108.]
M. Baldini, I.C. Lohman, M. Halonen, et al.
A polymorphism in the 5’. flanking region of the CD14 gene is associated with circulating soluble CD14 levels and total serum IgE.
Am J Respir Cell Mol Biol, 20 (1999), pp. 976-983
[109.]
H. Los, G.H. Koppelman, D.S. Postma.
The importance of genetic influences in asthma.
Eur Respir J, 14 (1999), pp. 1210-1227
[110.]
R.J. Ulevitch, P.S. Tobias.
Dependent mechanisms of cell stimulation by bacterial endotoxin.
Annu Rev Immunol, 13 (1995), pp. 437-457
[111.]
Pigliuci M, Schlichting C. Phenotypic evolution: a reaction norm perspective. Sunderland, MA: Sinauer Associates, Inc 1996.
[112.]
Y.-K. Kim, S.-Y. Oh, S.G. Jeon, et al.
Airway exposure levels of lypopolysaccharide determine type 1 versus type 2 experimental asthma.
J Immunol, 178 (2007), pp. 5375-5382
[113.]
M. Kalliomaki, S. Salminen, T. Poussa, et al.
Probiotics and prevention of atopic disease: 4-year follow-up of a randomized placebo. controlled study.
Lancet, 361 (2003), pp. 1869-1871
[114.]
J.C. Celedon, A.A. Litonjua, L. Ryan, et al.
Lack of association between antibiotic use in the first year of life and asthma, allergic rhinitis, or eczema at age of 5 years.
Am J Respir Crit Care Med, 166 (2002), pp. 72-75

Trabalho apresentado no XXIII Congresso de Pneumologia da SPP – Guarda, Novembro 2007 / Paper presented at the XXIII Congresso de Pneumologia da SPP / PSP Pulmonology Congress, Guarda, November 2007.

Copyright © 2008. Sociedade Portuguesa de Pneumologia
Download PDF
Pulmonology
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?